
Vol.:(0123456789)

Machine Learning (2024) 113:1–44
https://doi.org/10.1007/s10994-023-06405-x

1 3

Graph similarity learning for change‑point detection
in dynamic networks

Déborah Sulem1 · Henry Kenlay2 · Mihai Cucuringu1,3,4 · Xiaowen Dong2

Received: 18 May 2022 / Revised: 1 May 2023 / Accepted: 21 August 2023 /
Published online: 31 October 2023
© The Author(s) 2023

Abstract
Dynamic networks are ubiquitous for modelling sequential graph-structured data, e.g.,
brain connectivity, population migrations, and social networks. In this work, we consider
the discrete-time framework of dynamic networks and aim at detecting change-points,
i.e., abrupt changes in the structure or attributes of the graph snapshots. This task is often
termed network change-point detection and has numerous applications, such as market
phase discovery, fraud detection, and activity monitoring. In this work, we propose a data-
driven method that can adapt to the specific network domain, and be used to detect distri-
bution changes with no delay and in an online setting. Our algorithm is based on a siamese
graph neural network, designed to learn a graph similarity function on the graph snapshots
from the temporal network sequence. Without any prior knowledge on the network gen-
erative distribution and the type of change-points, our learnt similarity function allows to
more effectively compare the current graph and its recent history, compared to standard
graph distances or kernels. Moreover, our method can be applied to a large variety of net-
work data, e.g., networks with edge weights or node attributes. We test our method on
synthetic and real-world dynamic network data, and demonstrate that it is able to perform
online network change-point detection in diverse settings. Besides, we show that it requires
a shorter data history to detect changes than most existing state-of-the-art baselines.

Keywords Dynamic networks · Change-point detection · Graph similarity learning ·
Siamese graph neural network

1 Introduction

The study of dynamic—or temporal, evolutionary, time-varying—networks has become
very popular in the last decade, with the increasing amount of sequential data collected
from structured and evolving systems, e.g., online communication platforms (Kumar
et al., 2019), co-voting networks (Wilson et al., 2019), and brain fMRI data (Cribben &
Yu, 2017). In general, adding a time component to network data is a richer representa-
tion which allows for a more powerful analysis of these systems (Skarding et al., 2021).

 Editor: Joao Gama.

Extended author information available on the last page of the article

http://orcid.org/0000-0003-4781-4848
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06405-x&domain=pdf

2 Machine Learning (2024) 113:1–44

1 3

To analyse these networks, a variety of methodology has been proposed and recently
reviewed by several survey papers, for instance, on dynamic neural networks (Han et al.,
2021), dynamic higher-order networks (Majhi et al., 2022), and dynamic network embed-
ding (Xue et al., 2022).

Modelling the temporal evolution of a network is particularly important when the lat-
ter is governed by a non-stationary underlying process, whose dynamics undergo abrupt
switches or breaks, called change-points. For instance, social network interactions display
different structures along time, which can be affected by external events such as social
unrest or criminal attacks (Bourqui et al., 2009). Moreover, detecting structural breaks and
finding stationary phases in dynamic networks have diverse applications, from brain con-
nectivity state segmentation (Ondrus et al., 2021) to phase discovery in financial correla-
tion networks (Barnett & Onnela, 2016). Besides, real-world dynamic networks are often
structured around functional groups or densely connected communities (Rossetti & Caza-
bet, 2018). Therefore, the temporal evolution of such networks has been often analysed
through changes in these substructures (Corneli et al., 2018; Cribben & Yu, 2017; Del-
venne et al., 2010) such as size growths and decays, merges and splits of communities, etc.

For multivariate time series, the change-point detection task has been widely studied in
various settings, e.g., nonparametric (Zou et al., 2014), high-dimensional (Wang & Sam-
worth, 2018), and online (Wang et al., 2022). The equivalent task for dynamic networks,
termed network change-point detection (NCPD), has recently become a popular problem. It
has notably been applied to financial networks (Barnett & Onnela, 2016), brain data (Ofori-
Boateng et al., 2019), and transport systems (Yu et al., 2021). In this work, we introduce
the NCPD task in the discrete-time representation of temporal networks called snapshot
networks. We denote a dynamic network NI = {Gt}t∈I to be a sequence of graph snap-
shots, where I is an ordered set (for instance, ℕ>0), and for each t ∈ I , Gt , is a (static) graph,
which can be directed, have edge weights or node attributes.

For simplicity, I is chosen as ℕ>0 and we define a change-point for the network N as a
timestamp t ∈ I such that the distribution of the graphs before t, e.g., (G1,… ,Gt−2,Gt−1) , is
significantly different from the distribution of graphs observed from t, e.g., (Gt,Gt+1,…) .
To better formalise the concept of change-point, we assume that each snapshot Gt of the
dynamic network is independently generated from a random graph distribution Gt . For
instance, Gt can be an inhomogeneous Bernoulli network distribution (Wang et al., 2021;
Yu et al., 2021), a stochastic block model (Bhattacharjee et al., 2020a), or a graphon
model (Zhao et al., 2019). We call Gt the unknown generative distribution of Gt and � ∈ I
a change-point if G� ≠ G�−1 . In general, a dynamic network sequence may contain multiple
change-points 𝜏1 < 𝜏2 < ⋯ , corresponding to multiple distribution changes.

In this work, we aim at detecting and localising change-points in a online setting, i.e.,
as soon as the graph snapshots are collected. Note that in an offline analysis, one aims at
detecting change-points a-posteriori, i.e., after the whole data sequence has been observed.
For particular graph generative models, the feasibility of the NCPD task and minimax
rates of estimation have been analysed in dynamic random graph models for undirected,
unweighted, and unattributed graphs, e.g., Bernoulli networks (Enikeeva & Klopp, 2021;
Padilla et al., 2019; Wang & Samworth, 2018; Yu et al., 2021), graphon models (Zhao
et al., 2019), stochastic block models (Wang et al., 2013; Wilson et al., 2019), and gen-
eralized hierarchical random graphs (Peel & Clauset, 2015). However, many real-world
dynamic networks have heterogeneous properties, such as edge weights, node attributes,
and nonlinear dynamics (Li et al., 2017), which cannot be handled by existing model-based
methods. Moreover, specifying the generative distributions of a dynamic network, and the
type of change that can occur, can be too restrictive in practice (Wang et al., 2017).

3Machine Learning (2024) 113:1–44

1 3

In contrast, model-free approaches for NCPD often rely on a discrepancy measure
between two subsets of graphs, leveraging a graph similarity function, a graph kernel, or a
distance to perform pairwise graph comparisons (Chu & Chen, 2018; Cribben & Yu, 2017;
Gretton et al., 2008; Zhao et al., 2019). Nonetheless, it is often difficult to make an ade-
quate choice of such metric, while being agnostic to the generating mechanism or type of
change-point. In fact, without any domain knowledge, an arbitrary choice can lead to poor
performances (Chu & Chen, 2018; Enikeeva & Klopp, 2021; Kriege et al., 2020). Besides,
most online NCPD methods require finely tuning several hyperparameters, such as detec-
tion thresholds (Yu et al., 2021) and window sizes (Huang et al., 2020).

To address these challenges, we propose a change-point agnostic method that performs
online NCPD and includes learning a data-driven graph similarity function. Our approach
is therefore adaptive to the network distribution and different types of change-points. In
particular, it can easily incorporate general graph features such as node attributes, edge
weights or attributes, and can handle sparse settings. In summary, our contributions are the
following:

• We propose an online NCPD algorithm based on an efficient similarity statistic, with a
data-driven graph similarity function and a short-term history of graph snapshots;

• We design a graph similarity learning algorithm using a siamese graph neural network
(s-GNN) with a parsimonious architecture, and an adequate training procedure. In
particular, our s-GNN is sensitive to both local and global displacements in the graph
structure by leveraging Sort-k pooling layers (Zhang et al., 2018), and is able to handle
any available network attributes;

• We demonstrate the advantages of our data-driven similarity method for the online
NCPD task on synthetic networks with diverse types of change-points, as well as on
two real-world correlation networks data sets. In particular, we show that the learnt
graph similarity function can be used in an efficient online NCPD statistic avoiding
detection delays and requiring little additional hyperparameter tuning. We also pro-
pose a self-supervised training procedure for data sets without ground-truth labelling of
change-points.

Paper outline. In Sect. 2, we review existing work on the NCPD task, then present our
general setup and methodology in Sect. 3. In Sect. 4, we describe our evaluation procedure
and test our method on synthetic and real-world data sets. Finally, we conclude in Sect. 5
with a summary of our findings and discuss the current limits of our methods as well as
possible future developments.

2 Related works

The network change-point detection problem (NCPD) is a relatively recent area of research
that has largely incorporated principles from change-point detection in time series, espe-
cially in high-dimensional settings. Most existing NCPD methods are model-based, for
instance, they estimate the parameters of a network model, e.g., the generalised hierarchical
random graph (Peel & Clauset, 2015), a stochastic block model (De Ridder et al., 2016),
or the preferential attachment model (Bhamidi et al., 2018), and conduct hypothesis tests
to detect changes in the estimated parameters. Other methods maximize a penalized likeli-
hood function, e.g., based on a non-homogeneous Poisson point process model (Corneli

4 Machine Learning (2024) 113:1–44

1 3

et al., 2018) or a dynamic stochastic block model (Wilson et al., 2019; Bhattacharjee et al.,
2020b).

To relax the model assumptions, many model-free approaches for NCPD extract
graph features and use classical discrepancy measures to quantify the amount of change
between two subsets of snapshots. For instance, Miller and Mokryn (2020) use the degree
distribution as the snapshots’ features, while Wang et al. (2017) and Huang et al. (2020)
respectively choose the joint distribution of a set of edges, and the Laplacian eigenvec-
tors as graph features. For directly comparing pairs of snapshots, several graph similar-
ity functions, (pseudo)-distances, and kernels, have been used, such as the DeltaCon met-
ric (Koutra et al., 2016), the Hamming distance (Donnat & Holmes, 2018), the Frobenius
distance (Barnett & Onnela, 2016), the Laplacian spectral distance (Cribben & Yu, 2017;
Hewapathirana et al., 2020), the �2 or �∞ distances (Zhao et al., 2019), and graph kernels
(Desobry et al., 2005; Gretton et al., 2008; Harchaoui et al., 2009). Nevertheless, these
graph metrics suffer from intrinsic limitations and can be sensitive to the graph density
(Donnat & Holmes, 2018). Furthermore, Barnett and Onnela (2016) underline that the
choice of graph distance can significantly affect the output of a method, and therefore this
choice requires a-priori knowledge on the network distribution.

Another widely popular method in change-point detection problems is the cumulative
sums (CUSUM) statistic, which has been used in different time series contexts, e.g., in the
offline and high-dimensional setting (Wang et al., 2022), and more recently, in the online
setting (Wang et al., 2022). Several NCPD methods have adapted this efficient statistic to
dynamic network sequences, e.g., with sparse snapshots (Wang & Samworth, 2018) or
missing links (Dubey et al., 2021; Enikeeva & Klopp, 2021), in offline (Padilla et al., 2019)
and online (Yu et al., 2021) settings. In some specific network generative models, CUSUM
methods can achieve minimax rates of estimation for the overall false alarm probability and
the detection delay. However, these algorithms necessitate a forward window to detect a
change at a given timestamp, and often require to tune several hyperparameters, e.g., one or
several detection thresholds.

In addition to the aforementioned limitations, most previously cited methods do not pro-
vide a principled way to incorporate node attributes or even edge weights. To the best of
our knowledge, no prior work has ever considered graph neural networks (GNNs) for the
NCPD problem, despite the fact that such architectures can easily handle different types
of networks (e.g., signed or directed), and can inherently account for any available node
attributes (Kipf & Welling, 2016). In fact, dynamic graph neural networks have been lever-
aged in a varied range of tasks in dynamic network modelling, e.g., sequence predictions
(Manessi et al., 2020; Seo et al., 2018), dynamic link prediction task (Rossi et al., 2020;
Sankar et al., 2020; Trivedi et al., 2019), and anomalous edge detection (Cai et al., 2021).
Interestingly, Zhang et al. (2020) incorporate GNN layers in a deep-learning method for
change-point detection in multivariate time series to encode the cross-covariances between
the time series dimensions. In this context, the GNN is only one part of a complex neural
network architecture where the temporal dependencies are encoded by recurrent neural net-
work layers.

In contrast, we propose to leverage a static GNN in an online NCPD method. In fact,
GNNs can be designed to learn graph similarity functions in a data-driven way and for par-
ticular tasks in an end-to-end fashion. This type of methods, called graph metric learning
or graph similarity learning (GSL) (Ma et al., 2021), has notably been shown to improve
performance in graph classification tasks (Ktena et al., 2017; Liu et al., 2019; Yoshida
et al., 2021; Zhao & Wang, 2019). Common types of models for GSL are siamese graph
neural networks (Ma et al., 2019) and graph matching networks (Li et al., 2019; Ling et al.,

5Machine Learning (2024) 113:1–44

1 3

2021), and allow to learn flexible and adaptive similarity functions for downstream tasks.
In our method, we build a GSL model for the online NCPD task, which notably avoids the
need for choosing a-priori a particular graph distance, kernel, or embedding.

Finally, we note that the network change-point detection task shares some links with
graph anomaly detection. However, the latter is often considered in the static setting, and
consists in finding anomalous nodes, edges, or subgraphs in a single graph. In the dynamic
network setting, an event or change detection can be considered as a dynamic graph anom-
aly (Ranshous et al., 2015), although it is most often the case when the change affects only
one snapshot and is not sustained over a time period. In comparison, the network change-
point detection tasks aims at finding the timestamps at which the sequence of snapshots
undergoes a sustained change.

3 General set‑up and method

In this section, we present our NCPD method based on a graph similarity learning algo-
rithm. We start in Sect. 3.1 by introducing our general inference set-up and our network
change-point detection statistic. The latter leverages a graph similarity function learnt by
a s-GNN model described in Sects. 3.2 and 3.3. Finally, our training and validation proce-
dures are described in Sect. 3.4. Before presenting our methodology, we introduce some
useful notation.

Notation. We denote G = (A,X) ∈ � a graph with n ≥ 1 nodes, adjacency matrix
A ∈ ℝ

n×n and node attributes (or features) matrix X ∈ ℝ
n×d ∪ {�} , with d ≥ 1 attributes.

We say that the graph is attributed if X ≠ ∅ , and unattributed otherwise. If A ∈ ℝ
n×n
≥0

 , we
also say that the graph is unsigned.

Let In and 1n be respectively the n × n identity matrix and the all-one vector of size n.
For a matrix M , we denote Mij an entry, Mi∶ its i-th row and M∶j its j-th column. We also
denote ‖M‖F and ‖M‖ respectively the Frobenius norm and operator norm (i.e., the largest
singular value). For a vector v , we denote by ‖v‖ its Euclidean norm. For any positive inte-
ger J, let [J] denote the set {1, 2,… , J}.

3.1 Similarity‑based network change‑point detection

We consider a dynamic network NT = {Gi}1≤t≤T with T ≥ 1 snapshots, and an unknown
number of change-points 𝜏0 = 1 < 𝜏1 < ⋯ < 𝜏K < T , K ≥ 1 , such that, for any k ∈ [K] we
have

where (G0,… ,GK) are distinct graph generating distributions. Moreover, we assume
that the set of nodes in each graph snapshot Gt is fixed, of size n, and its ordering in the
adjacency matrices (At)1≤t≤T (and thus, the node attributes matrices (Xt)1≤t≤T) is kept
unchanged along the sequence. We also assume a minimal spacing between two consecu-
tive change-points, i.e., ∀k ≥ 1, �k − �k−1 ≥ L0 , with L0 > 0 a known constant. We note that
the i.i.d. assumption in (1) is a strong hypothesis, which, in practice, may not be verified,
since consecutive snapshots of real-world dynamic networks are often correlated. How-
ever, this set-up is standard for deriving theoretical results on NCPD methods in dynamic
random graph models (see for instance Bhattacharjee et al., 2020b; Wang & Samworth,

(1)Gi

i.i.d.
∼ Gk−1, 𝜏k−1 ≤ i < 𝜏k,

6 Machine Learning (2024) 113:1–44

1 3

2018; Yu et al., 2021; Zhao et al., 2019). In this work, we consider this set-up for clarity
of exposition, nevertheless, our method partially accounts for the possibly existing correla-
tions between the snapshots in the design of the snapshot sampling scheme (see Sect. 3.4).

Assume for now that we have at our disposal a graph similarity function
s ∶ � × � → [0, 1] that verifies, for any t1, t2 ∈ [T] , with Gi1

,Gi2
∈ {Gi}

K
i=0

 and
Gt1

∼ Gi1
,Gt2

∼ Gi2
 , i1, i2 ∈ {0, 1,… ,K},

Then, we can use the similarity function s to classify pairs of snapshots from NT as not
being separated by at least one change-point (label ‘1’), or not (label ’0’). In other words,
the pair similarity score s(Gt1

,Gt2
) can be interpreted as a pseudo-probability of Gt1

 and Gt2

of belonging to the same segment [�i, �i+1) , for some i ≤ K , and therefore, of having the
same generating distribution. To detect change-points in NT , we can then monitor the fol-
lowing average similarity statistic

where L < L0 is a hyperparameter that controls the length of the past (or backward) win-
dow. Note that for L = 1 , 1 − Zt(s,L) corresponds to a dissimilarity score that can be used
in the context of dynamic graph anomaly detection (Ranshous et al., 2015). However, for
the NCPD task, using a window size L > 1 , and thus averaging over multiple evaluation of
s, allows to better estimate the similarity between the current snapshot and the ones in its
recent past.

From (2) and (3), we define the following online detection rule. For any timestamp t, if

then, we state that t is a change-point. Note that in (4), the detection threshold is chosen
as 0.5 to match the classification property (2) of s. Nonetheless, if the similarity function
does not fully verify this property, and in order to have more flexibility on the detection
rate of the algorithm, one could replace 0.5 by a threshold � in (4). The latter would then
be a hyperparameter of our method, requiring a suitable validation method such as the ones
used by Ranshous et al. (2015) or Cribben and Yu (2017). In our experiments, we consider
the simpler version, which avoids any additional hyperparameter tuning procedure.

Using (4), we can then detect an arbitrary number of change-points in an online setting,
and without any detection delay, i.e., as soon as the snapshots are observed. However, the
properties and performance of such approach heavily depend on the similarity function s
and its discriminative power. Our main contribution consists of learning the graph similar-
ity function from a training sub-sequence of the dynamic network using a siamese graph
neural network model, which we describe in the next section.

Remark 1 The hyperparameter L tuning the window length of the statistic (3) controls the
minimal spacing between two change-points that can be detected by our method. We note
that a too small value is likely to provide a noisy estimate of the similarity between the
current graph Gt and the previous snapshots. Therefore, the choice of this hyperparam-
eter implies a trade-off between the temporal granularity of the detection algorithm and its
robustness for estimating an average similarity score. In practice, its value can be chosen

(2)s(Gt1
,Gt2

)

{
> 0.5 if Gi1

= Gi2
,

≤ 0.5 otherwise.

(3)Zt(s,L) =
1

L

L∑

i=1

s(Gt,Gt−i), t ≥ L,

(4)Zt� (s,L) > 0.5, t − L ≤ t� < t, and Zt(s,L) ≤ 0.5,

7Machine Learning (2024) 113:1–44

1 3

using domain knowledge regarding the frequency of change-points in the data, or validated
like other hyperparameters of our method. In our numerical experiments, we test differ-
ent values and observed on simulated data that our method is not very sensitive to this
hyperparameter, as soon as the graph similarity function has good discriminative power.
Therefore, a relatively small L (and history of data) can be used in practice, e.g., L = 6 in
our synthetic experiments in Sect. 4.3.

Remark 2 Our learning approach for the graph similarity function can also be employed in
the offline setting of NCPD, with a slight change of the detection rule. In this context, one
aims at localising changes in a dynamic network NT after the whole sequence has been col-
lected. For instance, for a network with a single change-point, one can localise the latter at
𝜏 , such that

Additionally, our method could be adapted to a setting where a small detection delay (e.g.,
of order L) may be tolerated. In this case, we could replace (3) by a change-point statistic
that also uses the snapshots in the forward window, e.g., (Gt,Gt+1,…Gt+L) , for instance, a
two-sample test statistic such as the maximum kernel Fisher discriminant ratio (Harchaoui
et al., 2009) or the maximum mean discrepancy (Gretton et al., 2008). In comparison to
(3), these statistics are likely to be more robust to any noise in the observations.

3.2 Graph similarity learning via siamese graph neural networks

In this section, we describe our siamese graph neural network model for learning the pairwise
similarity function s. In this deep-learning model, the input is a pair of graphs, say (G1,G2) ,
and, in the first model block, G1 and G2 are encoded with the same graph encoder (or equiva-
lently, two siamese encoders sharing the same weights). Then, the two graphs’ embeddings are
combined in the second block, the symmetric similarity module, which output is the pair simi-
larity score. The variability of s-GNN models mainly lies in the design of the graph encoder
and similarity module [see for instance different approaches in Ktena et al. (2017), Ling et al.
(2021), and Ma et al. (2019)]. Our proposed architecture for NCPD is represented in Fig. 1.
Note that its input will consist of pairs of graph snapshots from the dynamic network.

For the sake of simplicity, we use a simple graph convolutional network (GCN) (Kipf
& Welling, 2016) for undirected and unsigned graphs as the graph encoder in our s-GNN.
However, in our architecture, this block is generic and can be replaced by any ad-hoc graph
encoder, e.g., a graph attention network (Veličković et al., 2018), a GraphSage network (Ham-
ilton et al., 2017), or a graph isomorphism network (Xu et al., 2019). In a GCN, the embed-
ding of a graph H(j) at each layer j ∈ [J], J ≥ 1 is computed as follows

where W(j) ∈ ℝ
hj−1×hj is a weight matrix, hj, hj−1 are the numbers of hidden units of lay-

ers j and j − 1 , B(j) ∈ ℝ
hj is a bias vector, Ã = D̃

−1∕2
(A + In)D̃

−1∕2 is the normalized aug-

mented adjacency matrix with degree matrix D̃ = Diag ((A + In)1n) , and � is the point-
wise ReLU activation function, i.e., �(x) = max(x, 0) . Note that each row H(j)

i
 corresponds

to the embedding of node i at layer j. The input of the first layer of the GCN, denoted H(0) ,
is either the node attributes matrix X ∈ ℝ

n×d if the input graph is attributed or a positional

(5)𝜏 = arg min
L≤t≤T

Zt(s, L), or 𝜏 = arg max
L+1≤t≤T

|Zt(s, L) − Zt−1(s,L)|.

(6)H
(j) = 𝜎

(
ÃH

(j−1)
W

(j) + B
(j)
)
,

8 Machine Learning (2024) 113:1–44

1 3

encoding matrix (see Sect. 3.3). Moreover, the block’s output is a node-level embedding
matrix HJ ∈ ℝ

n×hJ from the last layer. Therefore, for any pair of snapshots (Gt1
,Gt2

) , the
graph encoder computes a pair of embeddings, (H1,H2) ∶= (HJ(Gt1

),HJ(Gt2
)) , where each

row vectors (H1)i∶ and (H2)i∶ correspond to the representations of node i ∈ [n] , respectively
in Gt1

 and Gt2
.

Then, the pair of embeddings (H1,H2) is processed by our similarity module, described
in Fig. 1b. This module consists of a Euclidean distance operation, a Sort-k pooling layer
(Zhang et al., 2018), and two fully-connected layers. The Sort-k pooling operation selects
and orders the k largest entries of the input, where k ≥ 1 is a hyperparameter tuning the
receptive field of this layer. Note that the pooling layer is applied to the n-dimensional
vector of row-wise Euclidean distances between the embeddings H1 and H2 , therefore, it
implies a subset selection of nodes having the largest displacement between their represen-
tations in the two snapshots. More precisely, the output of the pooling operation is given by

where r1,… , rk correspond to the indices of the (sorted) k largest elements in {fi}i∈[n] . Intu-
itively, a large distance fi can indicate that the i-th node plays distinct structural roles in Gt1

and Gt2

 . Besides, we note that the Euclidean distance operation in our similarity module
could be also replaced by another standard distance, similarity, or kernel function such as
the cosine similarity or a Gaussian kernel.

Finally, the pooled vector P is processed by two fully connected layers, each of them
containing an affine transformation, a batch normalisation layer, and a ReLU activation
function. Furthermore, the output of the second fully-connected layer is pooled using sum-
pooling and transformed into a non-negative similarity score s(Gt1

,Gt2
) ∈ [0, 1] by a sig-

moid activation function. This score can be transformed into a binary label using a clas-
sification threshold of 0.5, i.e.,

Note that a label 1 can be interpreted as the two graphs being similar, or having the same
generative distribution, or, more specifically in our context, not separated by a change-
point in the dynamic network sequence.

P = (fr1 ,… , frk), fi = ‖(H1)i∶ − (H2)i∶‖2, 1 ≤ i ≤ n,

(7)ŷ(Gt1
,Gt2

) =

{
1 if s(Gt1

,Gt2
) > 0.5

0 otherwise.

Fig. 1 Architecture of our graph similarity learning model. The general pipeline (a) is a siamese GNN,
which second block is a similarity module (b). The latter uses node-wise Euclidean distances, a Sort-k pool-
ing operation, and fully-connected layers, for computing the similarity scores of snapshots in dynamic net-
works

9Machine Learning (2024) 113:1–44

1 3

We find that using a Sort-k pooling layer in the design of the similarity module has two
main advantages in our context.

∙ First, as previously noted, it selects the nodes that have the largest distances between
their embeddings in the two graphs. Therefore, if a structural change in the dynamic net-
work affects only a few nodes, this change can be picked up by this pooling operation,
without being diminished by the absence of change in the rest of the network. In other
words, if the change between two snapshots affects n1 nodes, then, when k < n1 , each entry
of P has a large magnitude, even if the other distances fi may not be very large, and this
should lead to a low final similarity score. In the opposite case when k > n1 , the output
score may remain high if P does not contain many large entries. Nonetheless, in real-world
networks, choosing a hyperparameter k too small may result in detecting occasional graph
anomalies instead of sustained change-points. Therefore, there is a trade-off in our method
between the size of the subgraph directly affected by or causing a change that can be
detected, and the robustness to anomalous nodes. In practice, we tune this hyperparameter
k on a validation set, in order to be flexible to the typical “size” of the change-point in the
network. In fact, the change-points of interest may be localised onto a subset of nodes, for
instance, if a few “important” nodes (e.g., nodes with high centrality) experience sustained
change to their connectivity pattern, while the large majority of nodes and edges remain
almost unchanged. Besides, this component of our similarity module could be further built
upon for identifying which part of the network is mainly driving the change-point, thus
enhancing the explainability of the proposed pipeline.

∙ Second, Sort-k pooling reduces the number of parameters in our architecture, while
preserving the most important information for measuring potential and local graph
changes. More generally, replacing max or sum pooling by Sort-k pooling has been proven
to increase the accuracy and generalization power of neural networks, in particular in set-
tings with limited data availability, such as one-shot learning (Horváth, 2020). Note that
it can also be used for downsampling large graphs (Lee et al., 2019). In our change-point-
agnostic method, this pooling layer may thus mitigate our lack of information on the
change-points.

Remark 3 It is often a desirable property of GNN models with graph-level (resp. nodel-
level) output to be invariant (resp. equivariant) to nodes’ permutations, i.e., permutation
of the rows (resp. rows and columns) of the node attributes (resp. adjacency) matrices
of the graphs. This is due to the fact that the order of the node set in these matrices is
generally arbitrary. In our method, since the s-GNN model takes as input pairs of graph
snapshots from a dynamic network sequence, every graphs contain the same set of nodes
with the same ordering. Therefore, in our set-up, the invariance property corresponds to
the fact that the s-GNN is invariant to any permutation of the nodes that is applied on
both inputs. More precisely, for any permutation of the node set � ∶ [n] → [n] , denoting
� ∗ G the resulting transformation of a graph G under � (i.e., permutation of the rows and
columns of the adjacency and node attributes matrices), the invariance property writes
s(�(G1), �(G2)) = s(G1,G2) . This is indeed the case for our method since the node-wise
operations, i.e, the graph encoder and the Euclidean distance, are equivariant, and the Sort-
k pooling layer is permutation-invariant, i.e. P(H) = P(�(H)) , therefore, so is the final sim-
ilarity score.

10 Machine Learning (2024) 113:1–44

1 3

3.3 Node encodings for unattributed dynamic networks

In this section, we present our methodology for constructing synthetic node attributes
when the dynamic network is unattributed, i.e., each graph snapshot contains only struc-
tural information Gt = (At, �) . We recall that, for attributed dynamic networks, our s-GNN
described in Sect. 3.2 uses the snapshots’ node attributes matrices (Xt1

,Xt2
) to initialise

the features matrices (H(0)(Gt1
),H(0)(Gt2

)) . In fact, for unattributed networks, we need to
resort an appropriate initialisation of the features matrices, a choice that can be critical for
the expressivity of the model (Dwivedi et al., 2022). We propose different variants of our
method with several types of node encodings, i.e., synthetic node attributes that capture
their relative positions in the graph structure or their specific identity. The first three types
below correspond to existing techniques for general graph learning settings, and the last
type is one that we believe may also be appropriate for certain NCPD tasks.

1. Degree encoding (s-GNN-D) (Bruna & Li, 2017) In this encoding, the attribute of a
node is a scalar equal to its degree in the graph, i.e., H(0) = A1n ∈ ℝ

n×1.
2. Random-Walk encoding (s-GNN-RW) (Dwivedi et al., 2022; Li et al., 2020) With

l ≥ 1 , the vector of attributes of a node i is a l-dimensional vector H(0)

i∶
= [Rii,R

2
ii
,…R

l
ii
] ,

where R = AD
−1 is the random-walk operator.

3. Laplacian (or positional) encoding (s-GNN-PE) (Dwivedi & Bresson, 2021) The
node attributes are constructed from the principal eigenvectors of the symmetric nor-
malised Laplacian matrix L = In − D

−1∕2
AD

−1∕2 . More precisely, using the decom-
position of the Laplacian L = U

T
�U , where U,� respectively contain the ordered

set of eigenvectors and eigenvalues of L , the Laplacian encodings are defined as
H

(0) = [UT
∶1
,UT

∶2
,… ,UT

∶l
] ∈ ℝ

n×l, where l ≥ 1 is a chosen number of eigenvectors. Note
that these attributes are similar to the ones used in spectral clustering algorithms.

4. Identity encoding (s-GNN-I) In this variant, we define the initial feature matrix as
H

(0) = In , corresponding to a one-hot encoding of each node.
 We claim that this is an appropriate choice for the graph siamese encoder in our set-

ting, although, in general, this type of encoding can break the equivariance or invariance
properties of GNN models. However, this is not the case here since our s-GNN is applied
to the snapshots of a dynamic network, where we have assumed that the set of nodes
is constant and its global ordering, although arbitrary, is common to all graphs—note
moreover that the equivariance property has a modified definition in our setting (see
Remark 3) In fact, taking into account the nodes’ identities in graph learning tasks can
be beneficial in some tasks (Donnat & Holmes, 2018), and we believe it is particularly
the case for real-world dynamic networks with a small number of nodes (see Sect. 4.4.2).

Finally, we note that there exist more complex strategies for computing node encodings,
including learning procedures during the training phase of the s-GNN (Dwivedi et al.,
2022). However, these approaches significantly increase the model complexity, therefore,
we do not consider them in our method.

3.4 Training and validation procedures

Our s-GNN model described in Sect. 3.2 requires to be trained on a sub-sequence of the
dynamic network, in order to learn the weights matrices and bias vectors of the GCN
and fully-connected layers. This model can be trained in a supervised setting, when

11Machine Learning (2024) 113:1–44

1 3

a labelled data set of pairs of snapshots is available. In fact, if we can construct a set
D = {(Gi

1
,Gi

2
, yi)}1≤i≤N of N training pairs where each label yi ∈ {0, 1} indicates if the

graphs Gi
1
 and Gi

2
 are similar (or not separated by a change-point), then, we can learn

the model parameters by minimising, via gradient descent, the binary cross-entropy loss
function

We now describe our constructions of such training and validation sets, from sub-sequences
of the dynamic network containing ground-truth change-points.

To construct a set of labelled pairs of graphs D = {(Gi
1
,Gi

2
, yi)}1≤i≤N , we first divide the

sequence of graph snapshots into training, validation and test sub-sequences, e.g., using
consecutive windows of respectively 60%, 20% and 20% timestamps. We assume that the
resulting sub-sequences contain at least one ground-truth change-points. Then, we pro-
pose sampling and labelling schemes of pairs of snapshots from the training and validation
sub-sequences.

1. Random scheme (training set) we consider the set of all (non-ordered) pairs of graphs
in the training sequence and label each pair (Gi

1
,Gi

2
) with yi = 1 if there is no change-

point between t1 and t2 , and yi = 0 otherwise. Then we uniformly sample a fixed number
of pairs with label 1 (the positive pairs) and the same number of pairs with label 0 (the
negative pairs), without replacement. The number of pairs N is chosen heuristically
between T and 10 × T in our experiments.

2. Windowed scheme (validation set) we consider the set of all (non-ordered) pairs of
graphs in the network sequence that are not distant from each other by more than L
timestamps, and label them with the same procedure as in the Random scheme.

We note that the different sampling mechanisms for the pairs in the training and validation
sets are designed to satisfy a double objective of our learning procedure. In fact, we simul-
taneously aim to learn an adequate graph similarity function and to detect change-points in
a dynamic network sequence using the latter.

For the first objective, the Random scheme allows to sub-sample pairs of graph snap-
shots that are further away in the sequence. This design can mitigate two possible unde-
sired effects in real-world dynamic networks: on the one hand, the possible temporal cor-
relations between the snapshots in each pair and between the pairs themselves; on the other
hand, transition phenomena, i.e., gradual changes, between two generative distributions.
Additionally, the Random scheme avoids label imbalance in the training set, since we can
sub-sampling the same number of positive and negative pairs, which we assume is favora-
ble for the learnt similarity function.

For the second objective, the Windowed scheme builds a validation set of pairs that
is more similar to the test setting of our model. In fact, in our change-point statistic (3)
and detection rule (4), the graph similarity function s is only evaluated on pairs of graphs
within a sliding window of size L. In particular, these pairs of graphs may be highly cor-
related, and are more likely to be positive pairs than negative ones, since there are generally
only few change-points in the dynamic network. We finally note that in both the Random
and Windowed schemes, the sampled pairs have in common at most one graph snapshot.

Therefore, in a supervised NCPD setting, we can sample training and validation sets to
learn the (hyper) parameters of our s-GNN model using the previous sampling strategies.

LBCE(D, s) =
1

N

N∑

i=1

−yi log s(G
i
1
,Gi

2
) − (1 − yi) log(1 − s(Gi

1
,Gi

2
)).

12 Machine Learning (2024) 113:1–44

1 3

In an unsupervised NCPD setting, i.e., when the dynamic network does not contain any
ground-truth label of change-point, we need to resort to a novel ad-hoc self-supervised
learning technique (Liu et al., 2021). In this case, we first pre-estimate a set of change-
points in the training and validation sequences using a spectral algorithm, then apply the
previous sampling schemes to draw training and validation pairs of graphs (see more
details in Sect. 4.4.1 where this strategy is applied to the financial network data set).

4 Numerical experiments

In this section, we test and evaluate the performances of our s-GNN method in the online
NCPD task, first, in a controlled setting of synthetic dynamic networks (Sect. 4.3), then, on
two real-world correlation networks (Sects. 4.4.1 and 4.4.2).1

4.1 Performance metrics

For dynamic network data sets with ground-truth labels of change-points, we evaluate the
performance of NCPD methods using the following metrics.

• Localisation error (single change-point settings). In the case of a unique ground-
truth change-point � and estimate 𝜏 (see the synthetic settings in Sect. 4.3.1), the locali-
sation error metric is defined as ErrorCPD = |𝜏 − 𝜏|.

• Adjusted F1-score (multiple change-points settings) . In this setting, we use a clas-
sification metric of timestamps as change-point (label 1) or not change-point (label 0),
with a tolerance level t. Note that in the context of change-point detection, the labels
of timestamps differ from our labelling scheme of pairs of graphs in Sect. 3.4, where
1 corresponds to the label for “similar” pairs. Note moreover that for a value t of the
tolerance level, all the timestamps within a window of length 2t + 1 centered at the
ground-truth change-points are considered as ground-truth label 1 for this metric, and
a valid detection occurs whenever one of these timestamps is classified as change-point
(Xu et al., 2018).

For the the financial data set which has no ground-truth labels, we qualitatively discuss our
findings in Sect. 4.4.1, frame them in a financial context, and compare them with previous
analysis of similar data. Additionally, in the synthetic data experiments in Sect. 4.3, we
also evaluate the accuracy of our graph similarity function s for discriminating between
graphs sampled from the same or different distributions, i.e., for classifying pairs of graphs
generated from either the same or different random graph models.

Remark 4 In the multiple change-point setting, other performance metrics could be used,
for instance, metrics taking into account the distance to the ground-truth change-points
such as the Adjusted Rand Index (ARI). The latter measures the similarity between the
partition of the observation window [1, T], using respectively the detected and ground-
truth change-points. We have also tested the ARI metric in our synthetic experiments and
obtained similar performances than with the adjusted F1-score (see Appendix A.4).

1 The implementation of our method is available at https:// github. com/ dsulem/ DyNNet. git.

https://github.com/dsulem/DyNNet.git

13Machine Learning (2024) 113:1–44

1 3

4.2 Baselines

In our experiments, we compare our NCPD method to existing algorithms in two ways.
On the one hand, we compare our data-driven graph similarity function to graph distances,
similarity function, and graph kernels previously used in the context of NCPD and graph
two-sample-test, when used within our change-point statistic (3).

• Frobenius distance (Barnett & Onnela, 2016; Dubey et al., 2021; Nie & Nicolae,
2021), defined as dF(A,B) = ‖A − B‖F , for two matrices A,B with equal dimensions.
We apply this distance to the adjacency matrices of two graph snapshots. We note that
Bao et al. (2018) apply the Frobenius distance on the graph Laplacian matrices. More-
over, this distance has also been used in a minimax testing perspective between two
graph samples by Ghoshdastidar et al. (2020).

• Procrustes distance (Hewapathirana et al., 2020). This distance corresponds to the
Frobenius distance between the matrices of k principal eigenvectors of the symmetric
graph Laplacian L = In − D

1∕2
AD

1∕2 , after performing an alignment step. The num-
ber of eigenvectors k can be pre-specified or chosen by finding the optimal low-rank
approximation of L.

• DeltaCon similarity (Koutra et al., 2016). This graph similarity function is based on
the Matusita distance applied to the Fast Belief Propagation graph operators, defined
for a graph as S = [In + �2D − �A]−1 with 𝜖 > 0 . We use the implementation of this
similarity function provided in the Python package netrd.2

• Weisfeiler–Lehman (WL) kernel (Shervashidze et al., 2011).
 This graph kernel is notably used in the two-sample-test problem for sets of graphs

(Gretton et al., 2008). We use the implementation from the GraKel Python package
(Siglidis et al., 2020), and fix the number of iterations of the WL kernel algorithm to 5
in our experiments.

We note that for the previous baselines, we tune the threshold of our change-point detec-
tion rule on the training and validation sub-sequences. On the other hand, we compare
our NCPD algorithm to methods that do not rely on an explicit graph metric for detecting
change-points.

• Network change-point detection with spectral clustering (SC-NCPD) (Cribben &
Yu, 2017). This method first partitions the node set of each snapshot with a spectral
clustering algorithm, then computes an inner product between averages of spectral fea-
tures across a backward and a forward windows. In this method, the number of clusters
and the lengths of the windows are pre-specified.

• Laplacian anomaly detection (LAD) (Huang et al., 2020). This method applies both
to the anomaly detection and change-point detection tasks for dynamic networks, and is
based on the anomaly score

 where �t ∈ ℝ
� is the vector of � largest singular values of the unormalized Laplacian

of the graph Gt and �̃�t ∈ ℝ
� aggregates the � largest singular values of each snapshots

Zt = 1 − |�̃�t𝜎t|,

2 https:// netrd. readt hedocs. io/.

https://netrd.readthedocs.io/

14 Machine Learning (2024) 113:1–44

1 3

in a past window of size L, i.e., (�t−L,… , �t−1)The number of singular values k and the
length of the window are pre-specified hyperparameters.

• Network cumulative sums statistic (CUSUM) (Yu et al., 2021). This method uses
a backward and a forward windows of sizes L′ to compute a sequence of CUSUM
matrices

 Following the methodology in Yu et al. (2021), we divide the dynamic network into
two samples, NA = {G2t}1≤t≤T∕2 and NB = {G2t−1}1≤t≤T∕2 , containing the snapshots
respectively at even and uneven timestamps. This algorithm monitors two statistics
based on the CUSUM matrices (8) of these samples: the Frobenius norm of the Univer-
sal Singular Value Threshold (USVT) estimator B̃(t) of the CUSUM matrix computed
from NB , and the dot product between B̃(t)∕‖B̃(t)‖ and the CUSUM matrix computed
from NA . To avoid tuning the additional threshold parameters, we do not apply the
USVT step (or equivalently choose �1 = 0 and �2 = 1 in USVT). Moreover, we only use
the second statistics since the first one is very close to the next baseline.

• Operator norm of network CUSUM (CUSUM 2) (Enikeeva & Klopp, 2021). We
adapt this offline method to the online problem by computing the CUSUM matrix
over a past and future windows of size L′.

 The NCPD statistics is then zt = ‖Ct‖.

For these baselines, we fix the number of clusters or singular values to k = 6 and the
size of windows to L� = L∕2 when both the past and future are used in the NCPD sta-
tistic. We also note that these methods are applied to non-attributed dynamic networks
and therefore only use the sequence of adjacency matrices (At)t∈[T] . Nonetheless, in our
synthetic experiments, we generate unattributed networks and only one of the real-world
data set is attributed. In this case, the node attributes are ignored by the baseline meth-
ods (see Sect. 4.4.1).

4.3 Synthetic data

In this section, we evaluate our method on synthetic dynamic networks generated from
dynamic stochastic block models (Bhattacharjee et al., 2020b; Padilla et al., 2019; Yu et al.,
2021; Zhao et al., 2019) with one or multiple change-points, of several types.

4.3.1 Single change‑point detection

In this experiment, we construct dynamic network sequences with T = 100 snapshots with
n = 400 nodes, generated from a dynamic stochastic block model. In this sequence, we
introduce a single change-point � , uniformly sampled in [T/4, 3T/4] such that, for each
t ∈ [T] , each graph is unattributed and

(8)Ct =
1

√
2L�

�
t�

s=t−L�+1

As −

t+L��

s=t+1

As

�
, L� ≤ t ≤ T − L�.

15Machine Learning (2024) 113:1–44

1 3

where G1,G2 are the distributions of two distinct stochastic block models (SBM). We define
an SBM with K ≥ 1 communities with a connectivity matrix C = (p − q)IK + q1K1

T
K

 with
intra- and inter-cluster connectivity parameters p, q ∈ [0, 1] , and a cluster membership
matrix Θ ∈ {0, 1}n×K . The parameter p (respectively q) corresponds to the probability of
existence of an edge between two nodes in the same community (respectively in two differ-
ent communities), while each row Θi of the membership matrix has a single entry equal to
1, indicating the cluster to which the node i belongs.

We consider four different change-point scenarios, related to three possible types of
events affecting the snapshots’ community structure, namely the “Merge”, “Birth” and
“Swaps” change-points. These events imitate respectively the fusions of two communities,
the appearance of a single community, and cluster switches from a subset of nodes. These
scenarios are illustrated in Fig. 2, where we plot the heatmaps of the expected adjacency
matrices in the two models G1 and G2.

• Scenario 1 (“Merge”). In this scenario, the two SBMs G1 and G2 have respectively four
and two equal-size clusters, and parameters q = 0.02 and p ∈ [0.25, 0.1] . We note that
the larger p is, the easier the change-point detection problem.

• Scenario 2 (“Birth 1”). In this scenario, G1 is the distribution of an Erdös–Renyi model
with edge probability q = 0.03 and G2 is a SBM with two communities of size n − s and
s, s ∈ [40, 100] , and connectivity matrix

Gt

i.i.d
∼ G1, if 1 ≤ t < 𝜏,

Gt

i.i.d
∼ G2, if t ≤ 𝜏 ≤ t ≤ T ,

Fig. 2 Heatmaps of the adjacency matrices of the expected graph in the two stochastic block models G1
(first row) and G2 (second row), with n = 400 nodes, in the three main scenarios of our single change-point
synthetic experiments, i.e., “Merge” (a), “Birth” (b) and “Swaps” (c). We recall that G1 and G2 correspond
to the generative distributions of the snapshots before and after the change-point

16 Machine Learning (2024) 113:1–44

1 3

 with p = 0.1.
 We note that the bigger the size s of the denser cluster is, the easier the change-point

detection problem.
• Scenario 3 (“Birth 2”). This scenario uses the same type of change-point as Scenario

2 but in this case, we fix the size of the denser cluster s = 100 and we vary the intra-
cluster edge probability p ∈ [0.05, 0.2].

 We note that similarly to Scenario 1, the larger p is, the easier the change-point
detection problem.

• Scenario 4 (“Swaps”). In this scenario, the two SBMs G1 and G2 have the same con-
nectivity matrices with K = 4 equal-size clusters, p = 0.1 and q = 0.05 , but their cluster
membership matrices differ. In the second SBM, a proportion h ∈ [0.02, 0.2] of pairs of
nodes from the first SBM exchange their community memberships, i.e., “swap” their
corresponding row-vectors in � . We note that the bigger the proportion h, the easier the
change-point detection problem.

We note that in all settings, the graph snapshots are relatively sparse, and that Scenario 1
can be considered as a global change of the network structure, while the other scenarios
correspond to a local topological change, i.e., localised on a subset of nodes. In each sce-
nario and set of parameters, we test our change-point detection method on 50 dynamic net-
work sequences. Moreover, to train, validate, and evaluate our s-GNN model on the clas-
sification task, we independently generate 1000 labelled pairs of graphs (Gi

1
,Gi

2
, yi) , where

for each i ∈ [1000] , Gi
1
∼ Gk,G

i
2
∼ Gl , with k, l ∈ {1, 2} and yi = 1 if Gk = Gl and yi = 0

otherwise. In the latter data sets, we use respectively 60%, 20% and 20% of the pairs for
training, validating and testing. Additional details on this experimental setting can be found
in Appendix A.

We also test four variants of our s-GNN model, with Degree (s-GNN-D), Random
Walk (s-GNN-RW), Laplacian (s-GNN-PE), and Identity (s-GNN-I) node encodings, as
defined in Sect. 3.2. Moreover, in the NCPD task, for all methods including the baselines,
we estimate the unique change-point with the detection rule (5), and use a window size
L = 6 . Our results for the classification and change-point detection tasks in each scenario
are reported Figs. 3, 4, 5, and 6.

We note that in almost all scenarios and settings, all variants of our method, except
s-GNN-PE, outperform the (non-trained) baselines, in both the classification and NCPD
tasks. For s-GNN-PE, the worse performance could be attributed to the sign ambiguity in
Laplacian eigenvectors (Dwivedi et al., 2022), which may result in some inconsistencies
in the synthetic node attributes of the snapshots. Moreover, the Degree and Random Walk
node encodings generally seem to be better than the Identity encodings, except for the Sce-
nario 4. We conjecture that this is due to the fact that in the first three scenarios, nodes
belonging the same cluster are exchangeable in the SBM model, while in the last scenario,
this symmetry is broken by the membership exchange mechanism. For networks with a lot
of symmetry, the Identity encodings might introduce additional noise.

Consequently, these experiments show that in various change-point scenarios, using a
data-driven graph similarity function leads to better performances than existing baselines.
We additionally observe that the performance of the strongest baselines, i.e., the CUSUM
and CUSUM 2 methods, improve when larger window sizes L are used, while our method

C =

(
q q

q p

)
,

17Machine Learning (2024) 113:1–44

1 3

is not sensitive to this hyperparameter, as can be seen from a sensitivity analysis reported
in Appendix A.2. In particular, our method performs well even when using a short history
of data, and therefore could also detect change-points that are close to each other in a mul-
tiple change-point setting. In the next section, we test our method in the latter set-up.

4.3.2 Multiple change‑point detection

We now consider synthetic dynamic networks with multiple change-points, correspond-
ing to “Birth” and “Death” events of a more densely connected cluster of nodes. More

Fig. 3 Performance of our s-GNN method and baselines on the classification (a) and detection (b) tasks in
the “Merge” scenario. In the first task, pairs of graphs sampled from the same or different SBM distribu-
tions are classified using a graph similarity function or a graph distance, therefore, the set of baselines only
consists of the latter type of algorithms. In the second task, a single change-point needs to be localised in a
dynamic SBM sequencem and the set of baselines include graph distance- (or kernel-) based methods and
network change-point detection methods. We remark that for very large values of p, many methods attain
zero error and our method achieves a smaller error for all values of p

18 Machine Learning (2024) 113:1–44

1 3

precisely, we construct dynamic network sequences of length T = 2400 , with n = 400 and
K = 9 change-points �1,… , �K , such that, for each timestamp t ∈ [T] , we have

for �i, i ∈ {1, 3, 5, 7} and with �K+1 = T . In this case, G1 is an Erdös–Renyi model with
edge probability q = 0.02 , and G2 is the SBM of Scenario 2 from Sect. 4.3.1, with p = 0.08
and single cluster size s ∈ [20, 80] . We note that, similarly to the single change-point
Scenario 2, the larger the subset size s is, the easier this multiple change-point problem
becomes.

We divide each dynamic network sequence into training, validation, and test sub-
sequences, with respectively 1000, 1000, and 400 snapshots. Besides, we sample N = 9000
pairs of snapshots for training and validation of our s-GNN. Note that the training and
validation sub-sequences are also used to tune the detection threshold of the baselines,
using the best Adjusted F1-score. For this experiment, we use the Identity encodings in
our s-GNN and the detection rule (4) with L = 6 . Moreover, since here, the size s tunes the

Gt

i.i.d
∼ G1, if 1 ≤ t < 𝜏i,

Gt

i.i.d
∼ G2, if 𝜏i ≤ t < 𝜏i+1,

Fig. 4 Performances on the classification (a) and detection (b) tasks in the “Birth 1” scenario

19Machine Learning (2024) 113:1–44

1 3

Fig. 5 Performances on the classification (a) and detection (b) tasks in the “Birth 2” scenario

Fig. 6 Performances on the classification (a) and detection (b) tasks in the “Swaps” scenario

20 Machine Learning (2024) 113:1–44

1 3

spread of the change in the graph, we analyse the sensitivity of our method to the hyper-
parameter k, tuning the size of the Sort-k pooling layer in the s-GNN and thus the size of
the displacement that can be detected by our method (see Sect. 3.2). In particular, we test
variants of our method where this hyperparameter is fixed to a value, i.e., 30, 50 or 100
(denoted sgnn-topk-30, sgnn-topk-50, sgnn-topk-100). In each setting, we average our
results over 10 repetitions.

In Fig. 7, we report the test performance, in terms of the Adjusted F1-score with toler-
ance level t = 3 , of our method and the baselines, for different cluster sizes s ∈ [20, 80] .
We note that our general method (sgnn) outperforms all non-trained baselines, across all
difficulty levels, and is only matched by the CUSUM-2 baseline in the easiest settings, i.e.,
s ≥ 60 . Besides, the variant with k = 30 (sgnn-topk-30) appears to perform slightly better
on average than the other two, namely sgnn-topk-50 and sgnn-topk-100, in particular, in
the settings with small subset size s. These results suggest that our method may perform
better if k is chosen close to the size of the displacement; nonetheless, it is in general better
to validate it.

Finally, we note that we also tested the ARI metric for this experiment, and obtained
similar performance as with the Adjusted F1-score. Our numerical results can be found
in Appendix A.4. We also note that we excluded from these results the Procrustes dis-
tance, the WL kernel, DeltaCon similarity, and the LAD algorithm which were performing
poorly.

Remark 5 In comparison to the non-trained baseline methods, our method requires to train
the s-GNN model before using it in an online setting. Therefore, it has in general a big-
ger computational cost. In fact, the complexity of each training epoch for the s-GNN is of
order O(NJ(Md + nd2) + Nn log n) , where J and d are respectively the number of layers
and hidden units of the GCN encoder, M and n are the average number of edges and the
number of nodes in each snapshot, and N is the number of training samples (i.e., pairs of
graphs sampled from the training sequence). Note that the n log n term comes from the
Sort-k pooling layer. Once the s-GNN model is trained, the complexity of our change-
point detection algorithm with a window size L on a test sequence with T snapshots is of
order O(TLJ(Md + nd2) + TLn log n) , where in general TL << N . We also note that in our
experiments, we construct our s-GNN model using the DGL Python library, which lever-
ages the sparse graph and batch representations to accelerate matrix products and gradient

Fig. 7 Adjusted F1-score of our method (sgnn), its variants with fixed hyperparameter k ∈ {30, 50, 100}
(sgnn-topk-k), and the baselines versus the size of the denser subset s, in our synthetic experiment of
dynamic networks with n = 400 nodes and multiple change-points of types “Birth” and “Death”. Our
results are averaged over 10 repetitions

21Machine Learning (2024) 113:1–44

1 3

computations. In comparison, the Cumulative Sums statistics and the Frobenius distance
method only compute sums and norms of adjacency matrices, operations that are of order
O(TLM). Moreover, for sparse graphs, the baseline methods that solve an eigenvalue prob-
lem (LAD, SC-NCPD, and Procrustes distance) are of complexity O(Tn2) . Finally, the WL
kernel method is generally of order O(TLnniter) , where niter is the number of iterations of
the algorithm. In summary, our algorithm requires a bigger training cost that the baseline
methods; nonetheless, at test time, it has a comparable complexity to the other methods.
We note that the GCN encoders in our GNN architecture are quite shallow, since GNN
models typically do not benefit from stacking many layers (Oono & Suzuki, 2019), due to
oversmoothing phenomena. To illustrate this complexity analysis, we report in Table 1 the
average runtime of our method and the baselines on one instance of the multiple change-
point synthetic setting.

4.4 Real‑world network data

4.4.1 Dynamic correlation network of stock returns

In this experiment, we analyse a dynamic correlation network, constructed from the time
series of log-returns of stocks from the S &P 500 index, during a period of about 20 years
(February 2000–December 2020). More precisely, each timestamp of this dynamic network is
a month (between 02/2000 and 12/2020) and each snapshot is an unweighted graph obtained
from the transformation of a correlation matrix between n = 685 stocks.

For a correlation matrix C, each entry Cij , with i, j = 1,… , n , corresponds to the correla-
tion coefficient between the time series of open-to-close (intra-day) and close-to-open (over-
night) log returns of stocks i and j, over a sample of one month. Typically, there are 21 trading
days in a calendar month, hence each stock has associated a time series of length 42, since
each day of the month contributes with two returns. The correlation matrices define a fully-
connected, weighted graph, with entries in [−1, 1] and we first transform them into sparse
matrices with entries in {0, 1} using the following truncation rule. For each correlation matrix
C ∈ [−1, 1]n×n , we define a binary adjacency matrix A ∈ {0, 1}n×n as

where q0.1, q0.9 are the 10% and 90% quantiles of all entries Cij of all snapshots.

Aij = 1Cij>q0.9
+ 1Cij<q0.1

, ∀i, j = 1,… , n,

Table 1 Average computing
times in seconds of our method
(s-GNN) (training + testing
times) and the baselines for
one instance of the synthetic
scenarios with multiple change-
points (T = 2400 and n = 400)

Method Average computing time (s)

s-GNN 5080.1 + 15.46
Frobenius distance 21.7
Procrustes distance 118.4
Weisfeiler–Lehman kernel 2372.3
LAD 119.6
SC-NCPD 496.7
CUSUM 127.3
CUSUM-2 843.4

22 Machine Learning (2024) 113:1–44

1 3

After this pre-processing step of the time series of log-returns, each snapshot of the
dynamic network is a connected graph containing self-loops. We note that a similar proce-
dure has been applied in Yu et al. (2021), while other previous work transforms the correla-
tion matrices into complete weighted graphs, e.g., by squaring the correlation coefficients
(Chakraborti et al., 2020) or computing the inverse of the ultra-metric distance (Samal
et al., 2021). Here we adopt the sparsifying approach to avoid dealing with a large com-
plete graph.

Moreover, in this experiment, we include the following additional information of the
stocks’ economic activity during each month as node attributes.

• volatilities (two features): the standard deviations of the above 42 open-to-close and
close-to-open returns, based on which the correlation network was built;

• average daily volume, in shares, over the 21 days of the month;
• average shares outstanding, over the 21 days of the month.

We standardize the node attributes matrices using the mean and standard deviation of each
attribute, across all nodes and snapshots of the dynamic network.

In summary, this dynamic network contains T = 244 unweighted, attributed snapshots
Gt = (At,Xt), Xt ∈ ℝ

685×4 , t = 1,… , T , with an average edge density of 0.20 and average
degree of 135 (see Table 2 for additional network properties). However, there is no ground-
truth knowledge of change-points for this dynamic network. In fact, data sets of stock
returns have previously been analysed in the NCPD context by Yu et al. (2021), Barnett
and Onnela (2016), and Dubey et al. (2021). Closely related to our problem, Chakraborti
et al. (2020) and Samal et al. (2021) cluster market behaviours in the USA S &P 500 and
Japan Nikkei 225 stock networks and interpret changes in the behaviour following different
economic or global events. These previous work therefore provides strong evidence that
some major events, such as the ones listed in Table 3, have impacted the dynamics of stock
returns and their correlation structure (Barnett & Onnela, 2016).

Nonetheless, without ground-truth change-points, our s-GNN cannot be trained in a
supervised setting. Consequently, we design a self-supervised training procedure for this
problem which consists in pre-estimating a set of change-points in a training and valida-
tion sub-sequences. We first divide the dynamic network into consecutive windows of 50%,
20% and 30% graph snapshots for respectively training, validation, and testing, then parti-
tion the timestamps in the training and validation sub-sequences using the following meth-
odology. Since stocks are often clustered into market sectors (Chakraborti et al., 2020), we

Table 2 Mean, median and standard deviation of network statistics, for the snapshots of the dynamic cor-
relation network of S &P index stock log-returns

Financial network (T = 244 , n = 685)

Mean Median Standard deviation

Number of edges per graph 46.3 × 103 40.3 × 103 23.6 × 103

Edge density 0.20 0.17 0.10
Average degree 135 96 111
Average shortest path length 1.8 1.8 0.1
Diameter 2.8 3.0 0.5

23Machine Learning (2024) 113:1–44

1 3

conjecture that this cluster structure is reflected in the snapshots of our correlation network,
and can be used as a proxy for the underlying state of the financial market at a given time.
Therefore, we consider the following three-step procedure:

1. In each graph snapshot, we cluster the stocks into 13 groups, using a spectral clustering
algorithm based on the normalised symmetric Laplacian (Gallier, 2016);

2. For each pair of graph snapshots, we measure the similarity between the partitions of
stocks using the Adjusted Rand Index (ARI), and we use the latter as a graph similarity
function. Then, we apply the spectral clustering algorithm but this time on the graph
snapshots, using the symmetric normalised Laplacian of the similarity matrix obtained
from the ARI scores (see the heatmaps of scores in Fig. 13 in Appendix A), and divid-
ing the snapshots into 9 groups. We therefore obtain snapshot labels, interpreted as the
state or behaviour of the stock market at each timestamp.

3. We pre-estimate change-points by “smoothing” the snapshots’ labels: for each cluster
of snapshots, we compute the "centroid" timestamp, and re-label each snapshot with the
label of the closest centroid. These new labels now define a partition of the temporal
window [1, T] into consecutive intervals, and therefore, pre-estimated change-points in
the training and validation sub-sequences.

We note that in the first and second steps, the number of cluster is chosen by evaluating the
Silhouette index of the result clustering for different number of clusters k ∈ {2,… , 20} .
The pre-estimated change-points that are obtained with the previous procedure are repre-
sented in Fig. 14a in Appendix B. We then sample N = 3000 pairs of graphs in the training
sub-sequence using the Random scheme (see Sect. 3.4), and construct the validation set
using the Windowed scheme with a window of size 12 on the validation sub-sequence. The
set of hyperparameters of the s-GNN is chosen after a grid search on the validation set,
using the Adjusted F1-score

Next, we detect change-points in the network sequence using our NCPD statistic
Zt(s,L) (3) with a window size L = 6 (months) and our detection rule (4). In Fig. 8, we
plot 1 − Zt(s,L) , over the whole sequence of the dynamic network, i.e., training, vali-
dation and test sub-sequences, and mark the detected change-points with red stars. In
the top row, we represent a timeline of major market events that occurred during this
period, i.e., major financial crashes and global events, also listed in Table 3. We note
that these events could only consist of a subset of the ground-truth change-points for

Table 3 Dates of major financial
crashes and bubbles in the USA
market

Major crashes Period date

9/11 Financial Crisis 11/09/2001
Stock Market Downturn Of 2002 09/10/2002
US Housing Bubble 2005–2007
Lehman Brothers Crash 16/09/2008
DJ Flash Crash 06/05/2010
Tsunami/Fukushima 11/03/2011
Black Monday/Stock Markets Fall 08/08/2011
Chinese Black Monday 24/08/2015
Dow Jones plunge 02/2018–03/2018
WHO public emergency state (COVID-19) 30/01/2020

24 Machine Learning (2024) 113:1–44

1 3

the correlation network of stocks. In particular, they potentially do not include changes
in the relative importance of stocks, and other factors unreported in this analysis may
also influence the structure of this dynamic network. Nonetheless, we can qualitatively
interpret the detected change-point by our method and the peaks of our change-point
statistics in light of this list of known events.

We note that some of the detected change-points coincide or happen soon after market
events, in particular, in the test sub-sequence, from November 2014 to December 2020.
During this period, a group of peaks with two change-points are observed around the Chi-
nese Black Monday in August 2015, and two other change-points are detected in March
2018 and December 2019, which could be attributed respectively to the Dow Jones index’s
plunge in February–March 2018 and the emergence of COVID-19 in late 2019. Moreover,
in the training and validation period (from February 2000 to October 2014), the change-
point in November 2005 could be related to the US Housing Bubble, which spans a period
between 2005 and 2007, while the change-point in February 2007 could also be linked
to the latter event or to the premises of the financial crisis of 2007–2008. However, the
change-points in August 2009 and January 2012 are difficult to relate to one of the listed
events (possibly the Stock Market Fall for the latter one) and could potentially be false
positives of our method. We note that these change-points are very close to some pre-esti-
mated change-points (see Fig. 14 in Appendix B), therefore, could be due to false positives
in our self-supervised learning procedure.

We then qualitatively compare our findings with the change-point detection statistics of
the baseline methods applied to this data set, and the time series of VIX volatility indices
during the period 2000–2020, in Fig. 9. We note that almost all statistics of the baselines
display high values in the time period between 2010 and 2012, a period when several finan-
cial crashes happened, including the 2010 Dow Jone flash crash, the Fukushima nuclear
incident in March 2011, and the Stock Markets Fall of August 2011. In contrast to our
method, most baselines fail to indicate any potential change-point outside of this two-year
period. One exception holds for the CUSUM-2 method, which displays high values at
roughly six periods. However, this method provides evidence of periods of disruptions for
the network rather than clear change-points.

Fig. 8 Change-point statistic 1 − Zt(s, L) and detected change-points (marked with red stars) obtained with
our method on the dynamic correlation network of S &P 500 stock log-returns, with n = 685 nodes, observed
from February 2000 to December 2020. This period covers a training period from February 2000 to August
2010, a validation period from September 2010 to October 2014 and a test period from November 2014 to
December 2020. We note that the main financial events that occurred during this period, indicated with verti-
cal red bars, are not ground-truth change-points for the network per-se. Nonetheless, the peaks of our change-
point statistic in the test period (from November 2014 to December 2020) coincide with three market events,
namely the Chinese Back Monday, the Dow Jones Plunge, and the COVID-19 pandemics

25Machine Learning (2024) 113:1–44

1 3

Therefore, in comparison to the baseline NCPD methods, our algorithm seems to be
able to detect more market events. One explanation could be that our method benefits from
incorporating the stock attributes in the analysis, which are generally not taken into account

Fig. 9 VIX index and change-point detection statistics obtained with our method (s-GNN) and the base-
lines, on the dynamic correlation network of S &P 500 stock returns with n = 685 nodes, observed from
February 2000 to December 2020. The top row is a timeline of main financial events that occurred during
this period

26 Machine Learning (2024) 113:1–44

1 3

by standard methods. To test our hypothesis, we also applied our method on this data set,
replacing the node attributes by synthetic node encodings (see our results in Fig. 14c, d in
Appendix B). We observed that without the node information, our method detects more
change-points and is harder to interpret, thus providing evidence that the stock attributes
are beneficial for our NCPD method.

4.4.2 Dynamic correlation network of physical activity monitoring sensors

In this experiment, we test our method on a dynamic correlation network constructed from
a multiple sensors data set with changes of activity.

This public data set3 was built for benchmarking time series classifiers on physical activ-
ity monitoring (Reiss & Stricker, 2012a, b), and contains multivariate time series recorded
from eight subjects wearing 3D inertial measurement units (IMUs). These subjects have
performed a protocol of 12 different physical activities such as sitting, walking, descending
and ascending stairs, vacuum cleaning, etc. The eight time series, associated to each sub-
ject, have 27 dimensions, corresponding to measurements from 3 IMUs with 3-axis MEMS
sensors and a sampling period of 0.01s, on 3 body parts. Moreover, each timestamp of
this time series has a label corresponding to the performed activity. We note that, to our
knowledge, this data has been analysed in the change-point detection task for time series,
for instance by Zhang et al. (2020), but not in the context of NCPD yet. However, previous
work notes that the correlations between pairs of axis are particularly useful for differenti-
ating activities (Reiss & Stricker, 2012a).

Therefore, similarly to Sect. 4.4.1, for each subject, we build a dynamic correlation net-
work using the 27-dimensional time series. In this network, a node is a dimension of the
time series, and a timestamp corresponds to a window of 50 observations (i.e., a window
of length 0.5 s). For each window, we compute the correlation matrix between the dimen-
sions of the time series and transform it into a binary adjacency matrix by thresholding
the absolute values of the correlation coefficients at 0.2. We then obtain eight unweighted,
unattributed, dynamic networks with 27 nodes and around 2500 timestamps (see Table 4).
Finally, each graph snapshot is labelled with the activity label of the time series window.

Table 4 Properties of the eight dynamic networks obtained from the physical activity monitoring data set

We note that activities that are not listed have not been performed by any of the subjects in this experiment

 Subject Activity performed Number of
change-points

Number of
timestamps

1–4 5 6 7 12, 13, 16, 17 24

1 ✓ ✓ ✓ ✓ ✓ ✓ 13 2490
2 ✓ ✓ ✓ ✓ ✓ ✓ 13 2618
3 ✓ – – – ✓ – 10 1732
4 ✓ – ✓ ✓ ✓ – 11 2302
5 ✓ ✓ ✓ ✓ ✓ ✓ 13 2709
6 ✓ ✓ ✓ ✓ ✓ ✓ 13 2487
7 ✓ ✓ ✓ ✓ ✓ – 12 2314
8 ✓ ✓ ✓ ✓ ✓ ✓ 13 2606

3 http:// www. pamap. org/ demo. html.

http://www.pamap.org/demo.html

27Machine Learning (2024) 113:1–44

1 3

We naturally consider that a change of activity between two consecutive snapshots corre-
sponds to a change-point for the dynamic network.

We then design our NCPD evaluation set-up by defining the two following tasks.

• Individual-level NCPD. In this case, each of the eight dynamic networks (correspond-
ing to one subject) is considered separately, and segmented into training, validation,
and testing sub-sequences. Our method is then trained and tested on each network inde-
pendently; in particular, the learnt graph similarity functions are subject-dependent. We
note that, in this task, since activities are only performed once, the testing sub-sequence
of the dynamic network contains snapshots with unseen activity labels and therefore,
unseen types of change-points.

• Cross-individual NCPD. In this setting, the eight dynamic networks are mixed in the
training, validation, and testing sub-sequences, we train and test a single s-GNN model
for all subjects.

In the Individual-level NCPD task, we randomly split each dynamic network sequence
into 70% training and validation, and 30% test, by isolating a test and a validation intervals.
For the latter, we uniformly sample one change-point and select a window of size 60 s
centered at this change-point. For the test interval, we sample uniformly the lower end, in
the whole sequence. For this data, we use the Random scheme for both the training and
validation sets of the s-GNN, and sample respectively 4000 and 1000 pairs. Furthermore,
we sub-divide the Cross-individual NCPD task into two settings:

1. Random split: in this setting, we aggregate all the training, validation and test sub-
sequences and sets obtained in the Individual-level NCPD task. Our method and the
baselines are then tested on sub-sequences from every dynamic network.

2. Leave-one-subject-out (LOSO): in this setting, we keep the whole sequence of one
subject for testing, and train and validate on the seven remaining ones. The training and
validation sets are then obtained by aggregating the sets obtained in the Individual-level
NCPD task.

In Appendix C.1, we report a preliminary analysis that we conducted to get an insight
on the feasibility of the previously described NCPD tasks. In particular, we analyse (a)
the similarity of adjacency matrices within each dynamic network, grouped by activity
labels (Figs. 17 and 18); (b) the similarity of adjacency matrices within the same activity,
grouped by network, i.e., subject (Figs. 19 and 20). We note that some activities have simi-
lar correlation matrices, such as activities {1, 2, 3} , that correspond to three static activities,
i.e., sitting, lying, and standing. Moreover, for a subset of activities considered separately,
the Frobenius distance between the correlation matrices of different subjects are bigger
than the ones from the same subject. However, this difference is not always significant.
Moreover, the average Frobenius distance between the graphs with the same label and from
different subjects is smaller than the average distance between graphs with different labels,
indicating that the dissimilarity between subjects is smaller than the dissimilarity between
tasks.

Since in this data set, the networks are unattributed and the number of nodes is small,
we use a s-GNN model with Identity node encoding in our method. Moreover, we use a
window length of L = 20 timestamps in our change-point statistic (3). In Table 5, we report
the performances of our method and baselines, measured in terms of the adjusted F1-score

28 Machine Learning (2024) 113:1–44

1 3

with a tolerance level of 5 timestamps. We note that our method has the best performance
in most evaluation settings, in particular, it largely outperforms the baselines in the LOSO
task. These results thus indicate that our s-GNN model is able to learn a graph similarity
function that is generalisable to unseen subjects and activities.

5 Discussion and concluding remarks

In this work, we proposed a novel method for detecting change-points in dynamic networks
using a data-driven graph similarity function, trained and validated on pairs of snapshots
from the network sequence. We demonstrated on synthetic and real-world network data
that our trained model is more accurate at distinguishing graphs with different generative
distributions, and therefore, detecting change-points using a short history of data, com-
pared to existing baselines.

Our method assumes that change-points can be detected by measuring the similar-
ity between the current graph and its past snapshots, generated from a stationary refer-
ence distribution. However, this type of methodology is likely to under-perform when
the stationarity assumption does not hold, or when the change of distribution is gradual
and spans multiple timestamps. In particular, when there exists a transition regime
between two consecutive stationary distributions, it is likely that the similarity scores
s(Gt,Gt−1), s(Gt,Gt−2),… would stay quite high in the transition period and the change
would not be detected by our algorithm, in particular when using a small window size L.

Moreover, our change-point statistic (3) does not explicitly take into account correla-
tions between consecutive snapshots, although we aim at mitigating these correlations in
our training set using the Random scheme (see Sect. 3.4). Even though the conditional
independence assumption between snapshots is common in the dynamic network literature
(see for instance Yu et al. (2021) which derive optimality results under this condition), this

Table 5 Adjusted F1-score of our method and baselines in the Individual-level and Cross-individual
NCPD tasks on the physical activity monitoring data

The bold, respectively italics, values in each row denote the top best, respectively second best, performing
methods. The values in the parentheses denote the standard deviation over 10 repetitions of the random
splits train/validation/set, except for the Leave-one-subject-out (LOSO) setting for which mean and standard
deviation are computed over the 8 folds

Subject s-GNN-I Frobenius SC-NCPD CUSUM CUSUM 2

Individual-level NCPD
1 0.76 (0.20) 0.62 (0.31) 0.82 (0.14) 0.54 (0.30) 0.81 (0.20)
2 0.91 (0.11) 0.45 (0.22) 0.61 (0.08) 0.45 (0.12) 0.84 (0.11)
3 0.60 (0.18) 0.37 (0.14) 0.67 (0.15) 0.21 (0.27) 0.34 (0.26)
4 0.73 (0.18) 0.58 (0.26) 0.70 (0.08) 0.60 (0.07) 0.59 (0.22)
5 0.85 (0.19) 0.61 (0.22) 0.72 (0.16) 0.36 (0.24) 0.72 (0.13)
6 0.74 (0.19) 0.73 (0.22) 0.75 (0.17) 0.56 (0.30) 0.58 (0.16)
7 0.90 (0.13) 0.79 (0.19) 0.67 (0.35) 0.57 (0.23) 0.72 (0.37)
8 0.72 (0.24) 0.88 (0.13) 0.65 (0.14) 0.57 (0.28) 0.82 (0.13)
Cross-individual NCPD
Random split 0.81 (0.07) 0.75 (0.03) 0.75 (0.03) 0.59 (0.12) 0.80 (0.04)
LOSO 0.89 (0.02) 0.70 (0.20) 0.77 (0.06) 0.62 (0.11) 0.75 (0.12)

29Machine Learning (2024) 113:1–44

1 3

may be a restrictive assumption in practice. In particular, the performance of our method
may drop when the snapshots in a window of size L are highly correlated; nonetheless, one
could potentially increase the robustness of our algorithm by sub-sampling the snapshots in
[t − L, t] in (3) (if the window size L can be chosen to a large value), or by using a forward
window in combination with a two-sample test statistic (see Remark 2).

Besides, as previously noted, one main challenge posed by using a deep-learning based
model for NCPD is the training and validation procedures, which necessitate either a
dynamic network data set with change-point labels, or an adequate unsupervised or self-
supervised learning procedure. Since the former is quite rare, a future direction for this
work could be to develop the latter approach, for instance, using data augmentation strat-
egies (Carmona et al., 2021) for introducing artificial change-points in the training set.
Another possible extension would be to adapt our framework to more general types of
dynamic networks, e.g., snapshots with varying node sets or with missing edges. In certain
application domains, it may well be the case that change-points phenomena are localized
only in certain parts of the network (as considered in some of our synthetic experiments),
and are not affecting the global structure. To this end, yet another interesting addition to the
current framework is to be able to pinpoint specifically which part of the network is mainly
driving the change-point to enhance explainability, for instance using the nodes selected in
the Sort-k pooling layer.

Finally, testing the methodology on different types of networks, such as directed net-
works, is an interesting direction to explore, especially in the context of recent work in the
literature that encodes various measures of causality or lead-lag associations in multivari-
ate time series as directed graphs (Bennett et al., 2022; Run, 2019). The structure of such
weighted directed graphs may evolve over time, which motivates the need for change-point
detection techniques, and in such setting, adapting traditional spectral methods for change-
point detection would be challenging, due to the asymmetry of the adjacency matrix.

Appendix A: Additional material on the synthetic experiments

In this section, we provide additional details and results from our synthetic experiments in
Sect. 4.3, in particular, the hyperparameter selection procedure, two sensitivity studies, on
the window size parameter L and the choice of pooling layer of our s-GNN model, and the
numerical performance in the multiple change-point settings.

A.1 Hyperparameter selection

In each scenario and difficulty level, we train our s-GNN over maximum 100 epochs using
early stopping and the F1-score as our validation metric. Our hyperparameters are the num-
ber of hidden units, the size of the Sort-k layer, the dropout rate, the weight decay, and the
learning rate of the ADAM optimiser. We select one set of hyperparameters per scenario
by searching over a grid of values in one difficulty level, i.e., p = 0.03 in Scenario 1, s = 60
in Scenario 2, p = 0.06 in Scenario 3, and h = 0.1 in Scenario 4. The tested values are
{0.001, 0.01} for the learning rate, {0.01, 0.05, 0.1} for the dropout rate, {20, 40, 100} for
the size of the Sort-k layer, and {16, 32, 64} for the number of hidden units.

For each baseline based on a graph distance, kernel, or similarity function (i.e., the
Frobenius and Procrustes distances, DeltaCon similarity, and the WL kernel), we use

30 Machine Learning (2024) 113:1–44

1 3

the training and validation sets to tune the classification threshold � , also using the best
F1-score.

A.2 Sensitivity analysis with respect to the window size

In this experiment, we test the sensitivity of our NCPD method and the baselines to the win-
dow size parameter L, that sets the history of data used in (3), or in the baselines’ change-point
statistics, described in Sect. 4.2. We recall that this hyperparameter also sets the minimal dis-
tance between change-points that a method can detect.

For this analysis, we consider the “Merge” scenario from Sect. 4.3 and three difficulty lev-
els p = 0.3, 0.4, 0.5 , and evaluate performances using different window sizes L ∈ {6, 12, 24} .
Our numerical results, reported in Fig. 10, show that our method is not very sensitive to the
window size, in particular our best variant, s-GNN-RW, which uses the Random-Walk node
encodings, outperforms the baselines for all values of L. We also note that the performance
of methods based on CUSUM statistics, i.e., CUSUM and CUSUM-2, significantly increase
for larger L. We can therefore from this experiment that the choice of L in our NCPD statistic
(3) does not have a big impact on the performance, and therefore does not require to be finely
tuned.

A.3 Sensitivity analysis with respect to the pooling layer

In this section, we conduct an ablation experiment to test the importance of the Sort-k pool-
ing layer in our similarity module (see Sect. 3.2. For this analysis, we consider the Scenario 2
from Sect. 4.3 with different difficulty levels s ∈ [40, 100] and evaluate the performance of
our method when using an s-GNN with a Sort-k, Max, or Average pooling layer. Our findings
are reported in Fig. 11.

We observe that in this experiment, using Max pooling significantly increases the localisa-
tion error of our method, while Average pooling has a higher variance and mean error than
Sort-k pooling in most settings. We conjecture that Max pooling is poorly performing in this
context because it is less robust to the sparsity of the network than Sort-k and Average pool-
ing. Moreover, since Average pooling sums the displacements, here measured in terms of the
Euclidean between the node embeddings in the two graphs, over the whole set of nodes, it may
not be able to detect local changes. Therefore, we can conclude that using a Sort-k pooling
layer in our s-GNN model is beneficial for our NCPD method, and is probably more adapted
to detect small distribution changes, while being robust to the sparsity of edges.

A.4 Adjusted Rand Index performance

In this section, we report the numerical results of our synthetic experiments with multiple
change-points from Sect. 4.3.2, evaluated in terms of the Adjusted Rand Index (ARI) and
compare to the performance as measured by the Adjusted F1-score.

From Fig. 12, which is the analog of Fig. 7 with the ARI as the performance metric, we
note that we obtain similar performance as with the Adjusted F1-score, an intuition that is
confirmed by the numerical results in Table 6.

31Machine Learning (2024) 113:1–44

1 3

Appendix B: Additional material on the application to S &P 500 stock
returns

In this section, we first provide additional illustrations related to our self-supervised learning
procedure, then, report a supplementary analysis of this financial network data set using the
methodology of Chakraborti et al. (2020), that we relate to our findings from Sect. 4.4.1.

We recall that, for this data set, the lack of ground-truth change-points leads us to design
a self-supervised method which consists in pre-estimating change-points in the training and

Fig. 10 Localisation error for a single change-point of our method and the baselines, when using differ-
ent window sizes L ∈ {6, 12, 24} , in the “Merge” scenario from Sect. 4.3.1. The three panels correspond
to three difficulty levels of the detection task: difficult (p = 0.3) (a), moderate (p = 0.4) (b), and easy
(p = 0.5) (c)

32 Machine Learning (2024) 113:1–44

1 3

validation sub-sequences. In Fig. 13, we plot the heatmap of the similarity matrix between
the graph snapshots, as measured by the Adjusted Rand Index, between the stocks parti-
tions obtained by the spectral clustering algorithm applied to each snapshot. We note that
this similarity matrix seems to have a cluster structure; in particular, high similarity scores
can be found during the period of the financial crisis from 2007 to 2011 and in 2001–2002.

The pre-estimated change-points after clustering the previous similarity matrix and
smoothing the labels are represented in Fig. 14a. We recall that these change-points allow
to sample labelled training and validation sets, using the procedure described in Sect. 3.4,
and to train our s-GNN model. Then, we can compare the change-points estimated by our
method applied to the whole network sequence, i.e., including training, validation, and test
sub-sequences, represented in Fig. 14b, to the pre-estimated ones. We note that our method
detects fewer change points than our pre-estimation procedure. However, most detected
change-points are less than four months away from a pre-estimated one.

We also report in Fig. 14c, d our results when we ignore the node attributes of the
network. In this ablation study, we use our s-GNN model with Identity node encodings,

Fig. 11 Localisation error of our method when using a s-GNN model with Max, Average, or Sort-k pooling
layer, in the Scenario 2 from Sect. 4.3.1 with different difficulty levels s ∈ {40, 50, 60, 70, 100} . We note
that the Sort-k pooling method has the best performance in this experiment

Fig. 12 Adjusted Rand Idex of our method (sgnn), its variants with fixed hyperparameter k ∈ {30, 50, 100}
(sgnn-topk-k), and the baselines versus the size of the denser subset, in our synthetic experiment with mul-
tiple change-points of types “Birth” and “Death”, described in Sect. 4.3.2. The results are averaged over 10
repetitions. We note that these results are similar to the ones in Fig. 7, where the performances are meas-
ured with the Adjusted F1-score

33Machine Learning (2024) 113:1–44

1 3

and observe that our method then detects additional change-points in the sequence.
Although we cannot draw any definite conclusion from this analysis, we conjecture that
some of the latter change-points are False Positives, and that using the node attributes
data decreases the False Discovery Rate.

Moreover, we compare our findings with existing methodology applied to simi-
lar data and we analyse this dynamic correlation networks using the eigen-entropy,
employed by Chakraborti et al. (2020) to discover market behaviours—an analysis dis-
tinct though related to change-point detection.

We recall from their method that the eigen-entropy of a graph is the entropy of the
eigen-centrality vector, defined as a L1-normalised version of the principal eigenvec-
tor of the graph adjacency matrix. Note that the principal eigenvector is related to the

Table 6 Adjusted F1-score and
Adjusted Rand Index in the
multiple change-point detection
settings of Sect. 4.3.2, with size
s ∈ [20, 80]

These performances are averaged over 10 repetitions and the best ones
are highlighted in bold

Size s-GNN CUSUM 2 CUSUM SC-NCPD Frobenius

Adjusted F1-score
20 0.69 0.50 0.53 0.32 0.53
30 0.96 0.44 0.58 0.34 0.46
40 0.97 0.62 0.57 0.39 0.64
50 1.00 0.89 0.42 0.35 0.57
60 1.00 0.98 0.60 0.36 0.48
70 1.00 1.00 0.69 0.41 0.51
80 1.00 1.00 0.84 0.32 0.36
Adjusted Rand Index
20 0.62 0.38 0.44 0.27 0.37
30 0.91 0.39 0.50 0.39 0.36
40 0.96 0.53 0.48 0.33 0.35
50 1.00 0.80 0.32 0.34 0.45
60 1.00 0.93 0.50 0.41 0.36
70 1.00 0.98 0.63 0.39 0.37
80 1.00 0.99 0.74 0.38 0.33

Fig. 13 Heatmap of the pairwise similarity matrix between the graph snapshots of the training and valida-
tion sub-sequences from financial correlation network. We recall that the similarity is measured in terms of
the Adjusted Rand Index values between the partitions obtained for each pair of graph snapshots. The first
two digits denote the month, followed by the year, of the timestamp of each snapshot

34 Machine Learning (2024) 113:1–44

1 3

relative ranks of the different stocks in the market, and its entropy can be interpreted
as a measure of the market “disorder”. For each timestamp t, Chakraborti et al. (2020)
compute the eigen-entropy of the correlation matrix, denoted H(t), and of its two sub-
parts, the market mode, given by the principal eigen matrix, and the composite group
plus random mode, respectively HM(t) and HGR(t) . In Fig. 15, we represent H,HM ,HGR
over time, however, this time series is not directly interpretable. As in Chakraborti et al.
(2020), we represent these eigen-entropy values in 2D-phase spaces, together with the
snapshot labelling obtained with our self-supervised procedure, in Fig. 16a.

Fig. 14 Change-points estimated on the S &P 500 stock returns correlation network by the pre-estimation
procedure described in Sect. 4.4.1 (a) and by our method on the attributed data (b) and on the non-attrib-
uted data (c). In the latter case, we have used the Identity node encodings as synthetic attributes and the
obtained network change-point statistic is reported in the last panel (d)

35Machine Learning (2024) 113:1–44

1 3

We note that, although we do not observe a clear clustering of the snapshots in this 2D
representation, graphs with the same labels seems to lie closer to each other, which sup-
ports our intuition that the cluster structure of the snaphots reflects the state of the market
at a certain time stamp.

Fig. 15 Eigen-entropy of the correlation matrices (H(t))t , the market mode (HM(t))t and the group plus ran-
dom mode (HGR(t))t over time, in our financial data set of S &P stock returns

Fig. 16 Entropy differences |H(t) − HGR(t)| versus |H(t) − HM(t)| (in log scale) (a) and |H(t) − HM(t)| versus
mean market correlation (b) of the graph snapshots in the financial correlation dynamic network. Each dot
in the phase spaces corresponds to a snapshot, and its colors indicate its label, as pre-estimated in our self-
supervised procedure

36 Machine Learning (2024) 113:1–44

1 3

Fig. 17 Heatmaps of the average adjacency matrices of the snapshots from the first dynamic correlation
network (Subject 1) of the physical sensor data, grouped by their activity label

37Machine Learning (2024) 113:1–44

1 3

Appendix C: Additional material on the physical activity monitoring
data set

In this section, we report two additional analysis of the real-world data set of physical sen-
sors measurements.

C.1 Preliminary analysis of the dynamic networks

In this section, we evaluate the feasibility of the NCPD tasks that we designed for the
dynamic correlation networks of physical sensors (see Sect. 4.4.2). In particular, we are
interested in the dissimilarity between the snapshots’ adjacency matrices corresponding to
each activity and subject.

In Fig. 17, we plot the average adjacency matrices, for each activity, from the first sub-
ject, and in Fig. 18, the pairwise Frobenius distance between these matrices. We note that
the smallest distances are mostly diagonal entries, indicating that the matrices with the
same activity label are more similar to each other than ones with different labels.

In Fig. 19, we plot the Frobenius distances between the graphs of different subjects,
with the same activity label, for four activities. We observe that for activities 5 and 7, the
distances between matrices of different subjects are bigger than the ones from the same
subject, however this difference is not always significant and does not seem to appear for
activities 1 and 17. Figure 20 confirms this observation: we note that the average Frobenius
distance between the graphs with the same label and from different subjects is smaller than
the average distance between graphs with different labels.

Fig. 18 Heatmaps of Frobenius distances between the snapshots’ adjacency matrices from the first dynamic
network (Subject 1): between the average adjacency matrices per activity (a), and average (and standard
deviation) distances between adjacency matrices grouped by activities (b)

38 Machine Learning (2024) 113:1–44

1 3

Fig. 19 Heatmaps of average (and standard deviation) Frobenius distances between the snapshots’ adja-
cency matrices, grouped by subjects, for each activity label

39Machine Learning (2024) 113:1–44

1 3

C.2 Sensitivity analysis to the tolerance level of the adjusted F1‑score

In this section, we investigate the sensitivity of our results reported in Table 5 to the tol-
erance level chosen to compute the adjusted F1-score. For this analysis, we consider the
Random split setting of the Cross-Individual task (see Sect. 4.4.2), and reproduce this
experiment for different tolerance level t ∈ {1, 3, 5, 7} . From our numerical results in
Table 7, we note that our method has the best performance for all considered levels.

Author contributions All authors contributed to the writing of the paper. DS performed numerical
experiments.

Fig. 20 Heatmaps of the average
Frobenius distances between the
snapshots’ adjacency matrices
with the same activity label,
grouped by subjects

Table 7 Performance of our method (s-GNN-I) and baselines, as measured by the adjusted F1-score with
different tolerance levels, in the Cross-individual NCPD task and random split setting of the physical
activity monitoring data

The bold values in each row denote the top performing method, and values in parentheses correspond to the
standard deviations over 10 repetitions of the sampling scheme for the training/validation/testing sets (see
Sect. 4.4.2). We note for each tolerance level, our method attains superior performance when compared to
other baselines. We remark that choosing different tolerance levels essentially amounts to defining differ-
ent sets of ground truth change-points, hence, we should not necessarily expect a monotonic relationship
between tolerance versus the recovery accuracy of all methods

Cross-individual NCPD

Tolerance
level

s-GNN-I Frobenius SC-NCPD CUSUM CUSUM 2

1 0.60 (0.30) 0.53 (0.22) 0.43 (0.32) 0.33 (0.24) 0.42 (0.30)
3 0.87 (0.25) 0.68 (0.20) 0.70 (0.31) 0.53 (0.24) 0.76 (0.29)
5 0.61 (0.27) 0.53 (0.20) 0.41 (0.32) 0.27 (0.22) 0.44 (0.31)
7 0.85 (0.28) 0.71 (0.21) 0.71 (0.30) 0.56 (0.25) 0.75 (0.29)

40 Machine Learning (2024) 113:1–44

1 3

Funding MC acknowledges support from the EPSRC Grant EP/N510129/1 at The Alan Turing Institute.
XD acknowledges support from the Oxford-Man Institute of Quantitative Finance and the EPSRC (EP/
T023333/1). DS is supported by the EPSRC and MRC Centre for Doctoral Training in Statistical Science,
University of Oxford (Grant EP/L016710/1). HK is supported by the EPSRC Centre for Doctoral Training
in Autonomous Intelligent Machines and Systems, University of Oxford (EP/L015897/1).

Availability of data, material and code The code of the NCPD method is available on https:// github. com/
dsulem/ DyNNet.

Declarations

Conflict of interest The authors have no conflicts of interest to declare.

Ethics approval The authors did not need ethics approval for this work.

 Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Runge, K., et al. (2019). Detecting causal associations in large nonlinear time series datasets. Science
Advances. https:// doi. org/ 10. 1126/ sciadv. aau49 96

Bao, D., You, K., & Lin, L. (2018). Network distance based on Laplacian flows on graphs. arXiv: 1810.
02906.

Barnett, I., & Onnela, J. P. (2016). Change point detection in correlation networks. Scientific Reports,
6(1), 18893. https:// doi. org/ 10. 1038/ srep1 8893

Bennett, S., Cucuringu, M., & Reinert, G. (2022). Lead-lag detection and network clustering for mul-
tivariate time series with an application to the us equity market. KDD 2021 MileTS (preliminary
workshop version). https:// doi. org/ 10. 48550/ ARXIV. 2201. 08283.

Bhamidi, S., Jin, J., & Nobel, A. (2018). Change point detection in network models: Preferential attach-
ment and long range dependence. The Annals of Applied Probability, 28(1), 35–78.

Bhattacharjee, M., Banerjee, M., & Michailidis, G. (2020). Change point estimation in a dynamic sto-
chastic block model. Journal of Machine Learning Research, 21, 1–59.

Bhattacharjee, M., Banerjee, M., & Michailidis, G. (2020b). Change point estimation in a dynamic sto-
chastic block model. 1812.03090.

Bourqui, R., Gilbert, F., & Simonetto, P., et al. (2009). Detecting structural changes and command hier-
archies in dynamic social networks. In 2009 International conference on advances in social net-
work analysis and mining, IEEE (pp. 83–88).

Bruna, J., & Li, X. (2017). Community detection with graph neural networks. stat, 1050, 27.
Cai, L., Chen, Z., & Luo, C., et al. (2021). Structural temporal graph neural networks for anomaly detec-

tion in dynamic graphs. Association for Computing Machinery, New York, NY, USA (pp. 3747–
3756). https:// doi. org/ 10. 1145/ 34596 37. 34819 55.

Carmona, C.U., Aubet, F.X., & Flunkert, V., et al. (2021). Neural contextual anomaly detection for time
series. arXiv: 2107. 07702.

Chakraborti, A., Sharma, K., Pharasi, H. K., et al. (2020). Phase separation and scaling in correlation
structures of financial markets. Journal of Physics: Complexity, 2(1), 015,002.

https://github.com/dsulem/DyNNet
https://github.com/dsulem/DyNNet
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1126/sciadv.aau4996
http://arxiv.org/abs/1810.02906
http://arxiv.org/abs/1810.02906
https://doi.org/10.1038/srep18893
https://doi.org/10.48550/ARXIV.2201.08283
https://doi.org/10.1145/3459637.3481955
http://arxiv.org/abs/2107.07702

41Machine Learning (2024) 113:1–44

1 3

Chu, L., & Chen, H. (2018). Sequential change-point detection for high-dimensional and non-euclidean
data. 1810.05973.

Corneli, M., Latouche, P., & Rossi, F. (2018). Multiple change points detection and clustering in
dynamic networks. Statistics and Computing, 28, 989–1007.

Cribben, I., & Yu, Y. (2017). Estimating whole-brain dynamics by using spectral clustering. Journal of
the Royal Statistical Society Series C: Applied Statistics, 66(3), 607–627. https:// doi. org/ 10. 1111/
rssc. 12169. arXiv: 1509. 03730.

De Ridder, S., Vandermarliere, B., & Ryckebusch, J. (2016). Detection and localization of change points
in temporal networks with the aid of stochastic block models. Journal of Statistical Mechanics:
Theory and Experiment, 2016(11), 113,302. https:// doi. org/ 10. 1088/ 1742- 5468/ 2016/ 11/ 113302

Delvenne, J. C., Yaliraki, S. N., & Barahona, M. (2010). Stability of graph communities across time scales.
Proceedings of the National Academy of Sciences, 107(29), 12,755-12,760. https:// doi. org/ 10. 1073/
pnas. 09032 15107

Desobry, F., Davy, M., & Doncarli, C. (2005). An online kernel change detection algorithm. IEEE Transac-
tions on Signal Processing, 53(8), 2961–2974.

Donnat, C., & Holmes, S. (2018). Tracking network dynamics: A survey of distances and similarity metrics.
1801.07351.

Dubey, P., Xu, H., & Yu, Y. (2021). Online network change point detection with missing values. 2110.06450.
Dwivedi, V.P., & Bresson, X. (2021). A generalization of transformer networks to graphs. 2012.09699.
Dwivedi, V.P., Luu, A.T., & Laurent, T., et al. (2022). Graph neural networks with learnable structural and

positional representations. 2110.07875.
Enikeeva, F., & Klopp, O. (2021). Change-point detection in dynamic networks with missing links. 2106.14470.
Gallier, J. (2016). Spectral theory of unsigned and signed graphs. Applications to graph clustering: A

survey. 1601.04692.
Ghoshdastidar, D., Gutzeit, M., Carpentier, A., et al. (2020). Two-sample hypothesis testing for inhomo-

geneous random graphs. The Annals of Statistics. https:// doi. org/ 10. 1214/ 19- aos18 84
Gretton, A., Borgwardt, K., & Rasch, M. J., et al. (2008). A kernel method for the two-sample problem.

0805.2368.
Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs.

Advances in neural information processing systems 30.
Han, Y., Huang, G., Song, S., et al. (2021). Dynamic neural networks: A survey. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 44(11), 7436–7456.
Harchaoui, Z., Moulines, E., & Bach, F. R. (2009). Kernel change-point analysis. In Advances in neural

information processing systems (pp. 609–616).
Hewapathirana, I. U., Lee, D., Moltchanova, E., et al. (2020). Change detection in noisy dynamic net-

works: A spectral embedding approach. Social Network Analysis and Mining, 10(1), 1–22.
Horváth, A. (2020). Sorted pooling in convolutional networks for one-shot learning. arXiv preprint

arXiv: 2007. 10495.
Huang, S., Hitti, Y., & Rabusseau, G., et al. (2020). Laplacian change point detection for dynamic graphs

https:// doi. org/ 10. 1145/ 33944 86. 34030 77. arXiv: 2007. 01229.
Kipf, T. N., Welling, M. (2016). Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv: 1609. 02907.
Koutra, D., Shah, N., Vogelstein, J. T., et al. (2016). Deltacon: Principled massive-graph similarity func-

tion with attribution. ACM Trans Knowl Discov Data, 10, 28:1-28:43.
Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels. Applied Network Sci-

ence. https:// doi. org/ 10. 1007/ s41109- 019- 0195-3
Ktena, S. I., Parisot, S., & Ferrante, E., et al. (2017). Distance metric learning using graph convolutional

networks: Application to functional brain networks. In International conference on medical image
computing and computer-assisted intervention (pp. 469–477). Springer.

Kumar, S., Zhang, X., & Leskovec, J. (2019). Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. https:// doi. org/ 10. 1145/ 32925 00. 33308 95.

Lee, J., Lee, I., & Kang, J. (2019). Self-attention graph pooling. In 36th international conference on
machine learning, ICML 2019. International Machine Learning Society (IMLS), pp 6661–6670,
funding Information: This work was supported by the National Research Foundation of Korea
(NRF-2017R1A2A1A17069645, NRF-2016M3A9A7916996, NRF-2017M3C4A7065887) Pub-
lisher Copyright: © 36th International Conference on Machine Learning, ICML 2019. All rights
reserved.; 36th International Conference on Machine Learning, ICML 2019; Conference date:
09-06-2019 Through 15-06-2019.

Li, A., Cornelius, S. P., Liu, Y. Y., et al. (2017). The fundamental advantages of temporal networks. Sci-
ence, 358(6366), 1042–1046. https:// doi. org/ 10. 1126/ scien ce. aai74 88

https://doi.org/10.1111/rssc.12169
https://doi.org/10.1111/rssc.12169
http://arxiv.org/abs/1509.03730
https://doi.org/10.1088/1742-5468/2016/11/113302
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1214/19-aos1884
http://arxiv.org/abs/2007.10495
https://doi.org/10.1145/3394486.3403077
http://arxiv.org/abs/2007.01229
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1126/science.aai7488

42 Machine Learning (2024) 113:1–44

1 3

Li, P., Wang, Y., & Wang, H., et al. (2020). Distance encoding: Design provably more powerful neural
networks for graph representation learning. 2009.00142.

Li, Y., Gu, C., & Dullien, T., et al. (2019). Graph matching networks for learning the similarity of graph
structured objects. In ICML.

Ling, X., Wu, L., Wang, S., et al. (2021). Multilevel graph matching networks for deep graph similarity
learning. IEEE Transactions on Neural Networks and Learning Systems. https:// doi. org/ 10. 1109/
tnnls. 2021. 31022 34

Liu, J., Ma, G., & Jiang, F., et al. (2019). Community-preserving graph convolutions for structural and
functional joint embedding of brain networks. In: 2019 IEEE international conference on Big Data
(Big Data), IEEE (pp. 1163–1168).

Liu, Y., Pan, S., & Jin, M., et al. (2021). Graph self-supervised learning: A survey. arXiv preprint arXiv:
2103. 00111.

Ma, G., Ahmed, N. K., & Willke, T., et al. (2019). Similarity learning with higher-order graph convolu-
tions for brain network analysis. 1811.02662.

Ma, G., Ahmed, N. K., Willke, T. L., et al. (2021). Deep graph similarity learning: A survey. Data Min-
ing and Knowledge Discovery, 35(3), 688–725.

Majhi, S., Perc, M., & Ghosh, D. (2022). Dynamics on higher-order networks: A review. Journal of the
Royal Society Interface, 19(188), 20220,043.

Manessi, F., Rozza, A., & Manzo, M. (2020). Dynamic graph convolutional networks. Pattern Recogni-
tion, 97, 107,000. https:// doi. org/ 10. 1016/j. patcog. 2019. 107000

Miller, H., & Mokryn, O. (2020). Size agnostic change point detection framework for evolving networks.
PLoS ONE, 15(4), e0231,035.

Nie, L., & Nicolae., D. L. (2021). Weighted-graph-based change point detection.
Ofori-Boateng, D., Gel, Y. R., & Cribben, I. (2019). Nonparametric anomaly detection on time series of

graphs. bioRxiv.
Ondrus, M., Olds, E., & Cribben, I. (2021). Factorized binary search: change point detection in the network

structure of multivariate high-dimensional time series. https:// doi. org/ 10. 48550/ ARXIV. 2103. 06347,
arXiv: 2103. 06347.

Oono, K., & Suzuki, T. (2019). Graph neural networks exponentially lose expressive power for node clas-
sification. arXiv preprint arXiv: 1905. 10947

Padilla, O. H. M., Yu, Y., & Priebe, C. E. (2019). Change point localization in dependent dynamic nonpara-
metric random dot product graphs arXiv: 1911. 07494.

Peel, L., & Clauset, A. (2015). Detecting change points in the large-scale structure of evolving networks. In
Twenty-ninth AAAI conference on artificial intelligence.

Ranshous, S., Shen, S., Koutra, D., et al. (2015). Anomaly detection in dynamic networks: A survey. Wiley
Interdisciplinary Reviews: Computational Statistics, 7(3), 223–247.

Reiss, A., & Stricker, D. (2012a). Creating and benchmarking a new dataset for physical activity monitor-
ing. In Proceedings of the 5th international conference on pervasive technologies related to assistive
environments. Association for Computing Machinery, New York, NY, USA, PETRA ’12, https:// doi.
org/ 10. 1145/ 24130 97. 24131 48.

Reiss, A., & Stricker, D. (2012b). Introducing a new benchmarked dataset for activity monitoring. In 2012
16th international symposium on wearable computers (pp. 108–109). IEEE.

Rossetti, G., & Cazabet, R. (2018). Community discovery in dynamic networks. ACM Computing Surveys,
51(2), 1–37. https:// doi. org/ 10. 1145/ 31728 67

Rossi, E., Chamberlain, B., & Frasca, F., et al. (2020). Temporal graph networks for deep learning on
dynamic graphs. 2006.10637.

Samal, A., Pharasi, H. K., & Ramaia, S. J., et al. (2021). Network geometry and market instability. 2009.12335.
Sankar, A., Wu, Y., & Gou, L., et al. (2020). DySAT: Deep neural representation learning on dynamic

graphs via self-attention networks, Association for Computing Machinery, New York, NY, USA (pp.
519–527). https:// doi. org/ 10. 1145/ 33361 91. 33718 45.

Seo, Y., Defferrard, M., Vandergheynst, P., et al. (2018). Structured sequence modeling with graph con-
volutional recurrent networks. In L. Cheng, A. C. S. Leung, & S. Ozawa (Eds.), Neural Information
Processing (pp. 362–373). Cham: Springer.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., et al. (2011). Weisfeiler–Lehman graph kernels. Jour-
nal of Machine Learning Research, 12, 2539–2561.

Siglidis, G., Nikolentzos, G., Limnios, S., et al. (2020). Grakel: A graph kernel library in python. Journal of
Machine Learning Research, 21(54), 1–5.

Skarding, J., Gabrys, B., & Musial, K. (2021). Foundations and modeling of dynamic networks using
dynamic graph neural networks: A survey. IEEE Access, 9, 79143–79168. https:// doi. org/ 10. 1109/
access. 2021. 30829 32

https://doi.org/10.1109/tnnls.2021.3102234
https://doi.org/10.1109/tnnls.2021.3102234
http://arxiv.org/abs/2103.00111
http://arxiv.org/abs/2103.00111
https://doi.org/10.1016/j.patcog.2019.107000
https://doi.org/10.48550/ARXIV.2103.06347
http://arxiv.org/abs/2103.06347
http://arxiv.org/abs/1905.10947
http://arxiv.org/abs/1911.07494
https://doi.org/10.1145/2413097.2413148
https://doi.org/10.1145/2413097.2413148
https://doi.org/10.1145/3172867
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1109/access.2021.3082932
https://doi.org/10.1109/access.2021.3082932

43Machine Learning (2024) 113:1–44

1 3

Trivedi, R., Farajtabar, M., & Biswal, P., et al. (2019). Dyrep: Learning representations over dynamic
graphs. InInternational conference on learning representations. https:// openr eview. net/ forum? id=
HyePr hR5KX

Veličković, P., Cucurull, G., & Casanova, A., et al. (2018). Graph attention networks. 1710.10903.
Wang, D., Yu, Y., & Rinaldo, A. (2021). Optimal change point detection and localization in sparse dynamic

networks. The Annals of Statistics, 49(1), 203–232.
Wang, H., Tang, M., Park, Y., et al. (2013). Locality statistics for anomaly detection in time series of graphs.

IEEE Transactions on Signal Processing, 62(3), 703–717.
Wang, T., & Samworth, R. J. (2018). High dimensional change point estimation via sparse projection. Jour-

nal of the Royal Statistical Society Series B: Statistical Methodology, 80(1), 57–83. https:// doi. org/ 10.
1111/ rssb. 12243. arXiv: 1606. 06246.

Wang, T., Chen, Y., & Samworth, R. (2022). High-dimensional, multiscale online changepoint detection.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 84, 234–266.

Wang, Y., Chakrabarti, A., & Sivakoff, D., et al. (2017). Fast change point detection on dynamic social
networks. In Proceedings of the 26th international joint conference on artificial intelligence, IJCAI’17
(pp. 2992–2998). AAAI Press.

Wilson, J. D., Stevens, N. T., & Woodall, W. H. (2019). Modeling and detecting change in temporal net-
works via the degree corrected stochastic block model. Quality and Reliability Engineering Interna-
tional, 35(5), 1363–1378. https:// doi. org/ 10. 1002/ qre. 2520. arXiv: 1605. 04049.

Xu, H., Feng, Y., & Chen, J., et al. (2018). Unsupervised anomaly detection via variational auto-encoder for
seasonal KPIS in web applications. In Proceedings of the 2018 World Wide Web Conference on World
Wide Web - WWW ’18. https:// doi. org/ 10. 1145/ 31788 76. 31859 96

Xu, K., Hu, W., & Leskovec, J., et al. (2019). How powerful are graph neural networks? 1810.00826.
Xue, G., Zhong, M., Li, J., et al. (2022). Dynamic network embedding survey. Neurocomputing, 472, 212–

223. https:// doi. org/ 10. 1016/j. neucom. 2021. 03. 138
Yoshida, T., Takeuchi, I., & Karasuyama, M. (2021). Distance metric learning for graph structured data.

Machine Learning, 110(7), 1765–1811.
Yu, Y., Padilla, O. H. M., Wang, D., et al. (2021). Optimal network online change point localisation.

2101.05477.
Zhang, M., Cui, Z., & Neumann, M., et al. (2018). An end-to-end deep learning architecture for graph clas-

sification. In Proceedings of the AAAI conference on artificial intelligence.
Zhang, R., Hao, Y., & Yu, D., et al. (2020). Correlation-aware unsupervised change-point detection via

graph neural networks. 2004.11934.
Zhao, Q., & Wang, Y. (2019). Learning metrics for persistence-based summaries and applications for graph

classification. Advances in neural information processing systems (Vol. 32).
Zhao, Z., Chen, L., & Lin, L. (2019). Change-point detection in dynamic networks via graphon estimation.

1908.01823.
Zou, C., Yin, G., Feng, L., et al. (2014). Nonparametric maximum likelihood approach to multiple change-

point problems. The Annals of Statistics. https:// doi. org/ 10. 1214/ 14- aos12 10

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Déborah Sulem1 · Henry Kenlay2 · Mihai Cucuringu1,3,4 · Xiaowen Dong2

 * Déborah Sulem
 deborah.sulem@stats.ox.ac.uk

 Henry Kenlay
 kenlay@robots.ox.ac.uk

 Mihai Cucuringu
 mihai.cucuringu@stats.ox.ac.uk

 Xiaowen Dong
 xdong@robots.ox.ac.uk

https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HyePrhR5KX
https://doi.org/10.1111/rssb.12243
https://doi.org/10.1111/rssb.12243
http://arxiv.org/abs/1606.06246
https://doi.org/10.1002/qre.2520
http://arxiv.org/abs/1605.04049
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1016/j.neucom.2021.03.138
https://doi.org/10.1214/14-aos1210
http://orcid.org/0000-0003-4781-4848

44 Machine Learning (2024) 113:1–44

1 3

1 Department of Statistics, University of Oxford, Oxford, UK
2 Department of Engineering Science, University of Oxford, Oxford, UK
3 Mathematical Institute, University of Oxford, Oxford, UK
4 The Alan Turing Institute, London, UK

	Graph similarity learning for change-point detection in dynamic networks
	Abstract
	1 Introduction
	2 Related works
	3 General set-up and method
	3.1 Similarity-based network change-point detection
	3.2 Graph similarity learning via siamese graph neural networks
	3.3 Node encodings for unattributed dynamic networks
	3.4 Training and validation procedures

	4 Numerical experiments
	4.1 Performance metrics
	4.2 Baselines
	4.3 Synthetic data
	4.3.1 Single change-point detection
	4.3.2 Multiple change-point detection

	4.4 Real-world network data
	4.4.1 Dynamic correlation network of stock returns
	4.4.2 Dynamic correlation network of physical activity monitoring sensors

	5 Discussion and concluding remarks
	Appendix A: Additional material on the synthetic experiments
	A.1 Hyperparameter selection
	A.2 Sensitivity analysis with respect to the window size
	A.3 Sensitivity analysis with respect to the pooling layer
	A.4 Adjusted Rand Index performance

	Appendix B: Additional material on the application to S &P 500 stock returns
	Appendix C: Additional material on the physical activity monitoring data set
	C.1 Preliminary analysis of the dynamic networks
	C.2 Sensitivity analysis to the tolerance level of the adjusted F1-score

	References

