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Abstract
We propose a decentralised “local2global” approach to graph representation learning, that 
one can a-priori use to scale any embedding technique. Our local2global approach pro-
ceeds by first dividing the input graph into overlapping subgraphs (or “patches”) and train-
ing local representations for each patch independently. In a second step, we combine the 
local representations into a globally consistent representation by estimating the set of rigid 
motions that best align the local representations using information from the patch overlaps, 
via group synchronization. A key distinguishing feature of local2global relative to exist-
ing work is that patches are trained independently without the need for the often costly 
parameter synchronization during distributed training. This allows local2global to scale to 
large-scale industrial applications, where the input graph may not even fit into memory and 
may be stored in a distributed manner. We apply local2global on data sets of different sizes 
and show that our approach achieves a good trade-off between scale and accuracy on edge 
reconstruction and semi-supervised classification. We also consider the downstream task 
of anomaly detection and show how one can use local2global to highlight anomalies in 
cybersecurity networks.

Keywords Scalable graph embedding · Distributed training · Group synchronization

1 Introduction

The application of deep learning on graphs, or Graph Neural Networks (GNNs), has 
recently become popular due to their ability to perform well on a variety of tasks on non-
Euclidean graph data. Common tasks for graph-based learning include link prediction (i.e., 
predicting missing edges based on observed edges and node features), semi-supervised 
node classification (i.e., classifying nodes based on a limited set of labeled nodes, node 
features, and edges), and unsupervised representation learning (i.e., embedding nodes in 
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a low-dimensional space ℝd , with d much smaller than the number of nodes in the graph). 
Among the significant open challenges in this area of research is the question of scalability 
both during training and inference. Cornerstone techniques such as Graph Convolutional 
Networks (GCNs) (Kipf & Welling, 2017) make the training dependent on the neighbor-
hood of any given node. Since in many real-world graphs the number of neighbors grows 
exponentially with the number of hops taken, the scalability of such methods is a signifi-
cant challenge. In recent years, several techniques have been proposed to render GNNs 
more scalable, including layer-wise sampling (Hamilton et al., 2018) and subgraph sam-
pling (Chiang et al., 2019) approaches (see Sect. 2).

We contribute to this line of work by proposing a decentralized divide-and-conquer 
approach to improve the scalability of network embedding techniques. While our work 
focuses on node embeddings, our proposed methodology can be naturally extended to edge 
embeddings. Our “local2global” approach proceeds by first dividing the network into over-
lapping subgraphs (or “patches”) and training separate local node embeddings for each 
patch (local in the sense that each patch is embedded into its own local coordinate system). 
The resulting local patch node embeddings are then transformed into a global node embed-
ding (i.e. all nodes embedded into a single global coordinate system) by estimating a rigid 
motion applied to each patch using the As-Synchronized-As-Possible (ASAP) algorithm 
(Cucuringu et al., 2012a, b). A key distinguishing feature of this “decentralised” approach 
is that we can train the different patch embeddings separately and independently, without 
the need to keep parameters synchronised. The benefit of local2global is fourfold: ∙ (1) it 
is highly parallelisable as each patch is trained independently; ∙ (2) it can be used in pri-
vacy-preserving applications and federated learning setups, where frequent communication 
between devices is often a limiting factor (Kairouz & McMahan, 2021), or “decentralized” 
organizations, where one needs to simultaneously consider data sets from different depart-
ments; ∙ (3) it can reflect varying structure across a graph through asynchronous parameter 
learning; and ∙ (4) it is a generic approach that, in contrast to most existing approaches, can 
be applied to a large variety of embedding techniques.

We assess the performance of the resulting embeddings on three tasks: one edge-level 
task, i.e., edge reconstruction, and two node-level tasks, i.e., semi-supervised classification 
and anomaly detection. In the edge reconstruction task, we use the learned node embed-
dings to reconstruct known edges in the network, verifying that the embedding captures the 
network information. In semi-supervised node classification, one has a few labeled exam-
ples and a large amount of unlabeled data, and the goal is to classify the unlabeled data 
based on the few labeled examples and any structure of the unlabeled data. Here we pro-
pose to first train an embedding for the network in an unsupervised manner and then train a 
classifier on the embedding to predict the labels. Finally, as an application we have applied 
our method to the problem of anomaly detection where a low-dimensional representation 
that denoises and preserves the intrinsic structural properties of the data is essential.

The remainder of this paper is structured as follows. We give a detailed overview of 
related work in Sect. 2 and describe our methodology in Sect. 3. We show and interpret 
the results of numerical experiments on a variety of tasks and data sets in Sects. 4 and 5. 
We conclude and offer directions for future work in Sect. 6. Our reference implementations 
of the local2global patch alignment method1 and the distributed training of graph embed-
dings2 are available from GitHub. This paper extends preliminary proof-of-concept results 

1 https:// github. com/ LJeub/ Local 2Glob al.
2 https:// github. com/ LJeub/ Local 2Glob al_ embed ding.

https://github.com/LJeub/Local2Global
https://github.com/LJeub/Local2Global_embedding
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that were published as an extended abstract at the KDD 2021 “Deep Learning on Graphs” 
workshop (Jeub et al., 2021).

2  Related work

This section briefly surveys scalable techniques for GNNs, and describes challenges aris-
ing when considering large scale graphs. Consider a graph G(V, E) with n = |V| nodes and 
m = |E| edges. Let A be the adjacency matrix of G, where

then a general GNN layer is a differentiable function H = GNN(X;A) , where X ∈ ℝ
n×din 

are the input node features and H ∈ ℝ
n×dout are the output node features. Let xi be the ith 

row of X and similarly let hi be the ith row of H . Most GNN layers can be written as

where � and � are differentiable, vector-valued functions (typically with trainable param-
eters), C(A) is the convolution matrix,3 and 

⨁
 is a permutation-invariant aggregator func-

tion (such as sum, max, ...). The formulation in Eq. (1) is often referred to as message pass-
ing where �(xi, xj) is the message from node j to node i. Many different architectures have 
been proposed following this general framework (see Wu et al. (2021) for a recent survey).

A particularly simple architecture which still has competitive performance (Shchur 
et  al., 2019) is GCN (Kipf & Welling, 2017). Here, C(A) is the normalised adjacency 
matrix with self-loops, i.e.,

where Ã = A + I and D̃ is the diagonal matrix with entries D̃ii =
∑

j Ãij . Further, � is a 
linear function, i.e., �(xj) = xT

j
W where W ∈ ℝ

din×dout is a learnable parameter matrix. The 
GCN layer can be written in matrix form as

where � is an element-wise non-linearity (typically ReLU).
The key scalability problems for GNNs only concern deeper architectures where we 

have l nested GNN layers (Chen et al., 2022), i.e.,

In particular, a single-layer GNN is easy to train in a scalable manner using mini-batch 
stochastic gradient descent (SGD). For simplicity, assume that we have a fixed feature 
dimension d, i.e., din = dout = d for all layers. The original GCN paper of Kipf and Welling 
(2017) uses full-batch gradient descent to train the model which entails the computation of 

Aij =

{
1, (i, j) ∈ E

0, otherwise

(1)hi = �

(
xi,

n⨁

j=1

C(A)ij�(xi, xj)

)
,

C(A) = Ā = D̃
−

1

2 ÃD̃
−

1

2 ,

(2)H = GCN(X;A) = 𝜎
(
ĀXW

)
,

(3)
H = GNN(GNN(… ;A);A)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
l

.

3 Note that C(A) should satisfy C(PAPT ) = PC(A)PT for any n × n permutation matrix P.
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the gradient for all nodes before updating the model parameters. This is efficient in terms 
of time complexity per epoch O(lmd + lnd2) , where n is the number of nodes and m is the 
number of edges. However, it requires storing all the intermediate embeddings and thus has 
memory complexity O(lnd + ld2) . Further, as there is only a single parameter update per 
epoch, convergence tends to be slow.

The problem with applying vanilla mini-batch SGD (where we only compute the gradi-
ent for a sample of nodes, i.e., the batch) to a deep GNN model is that the embedding of the 
nodes in the final layer depends on the embedding of all the neighbours of the nodes in the 
previous layer and so on iteratively. Therefore, the time complexity for a single mini-batch 
update approaches that for a full-batch update as the number of layers increases, unless the 
network has disconnected components. There are mainly three families of methods (Chen 
et al., 2020; Chiang et al., 2019) that have been proposed to make mini-batch SGD training 
more efficient for GNNs.

Layer-wise sampling. The idea behind layer-wise sampling is to sample a set of nodes 
for each layer of the nested GNN model and compute the embedding for sampled nodes in 
a given layer only based on embeddings of sampled nodes in the previous layer, rather than 
considering all the neighbours as would be the case for vanilla SGD. This seems to have 
first been used by GraphSAGE (Hamilton et  al., 2018), where a fixed number of neigh-
bours is sampled for each node at each layer. However, this results in a computational com-
plexity that is exponential in the number of layers and also redundant computations as the 
same intermediate nodes may be sampled starting from different nodes in the batch. Later 
methods avoid the exponential complexity by first sampling a fixed number of nodes for 
each layer either independently [FastGCN, Chen et  al. (2018a)] or conditional on being 
connected to sampled nodes in the previous layer (LADIES, Zou et al. (2019)) and reusing 
embeddings. Both methods use importance sampling to correct for bias introduced by non-
uniform node-sampling distributions. Also notable is Chen et al. (2018b), which uses vari-
ance reduction techniques to effectively train a GNN model using neighbourhood sampling 
as in GraphSAGE with only 2 neighbours per node. However, this is achieved by storing 
hidden embeddings for all nodes in all layers and thus has the same memory complexity as 
full-batch training.

Linear model. Linear models remove the non-linearities between the different GNN lay-
ers which means that the model can be expressed as a single-layer GNN with a more com-
plicated convolution operator and hence trained efficiently using mini-batch SGD. Com-
mon choices for the convolution operator are powers of the normalised adjacency matrix 
(Wu et  al., 2019) and variants of personalised Page-Rank (PPR) matrices (Busch et  al., 
2020; Chen et  al., 2020; Bojchevski et  al., 2020; Klicpera et  al., 2019). Another variant 
of this approach is Frasca et al. (2020), which proposes combining different convolution 
operators in a wide rather than deep architecture. There are different variants of the linear 
model architecture, depending on whether the non-linear feature transformation is applied 
before or after the propagation (see Busch et al. (2020) for a discussion), leading to predict-
propagate and propagate-predict architectures respectively. The advantage of the propa-
gate-predict architecture is that one can pre-compute the propagated node features (e.g., 
using an efficient push-based algorithm as in Chen et al. (2020)) which can make training 
highly scalable. The disadvantage is that this will densify sparse features which can make 
training harder (Bojchevski et  al., 2020). However, the results from Busch et  al. (2020) 
suggest that there is usually not much difference in prediction performance between these 
options (or the combined architecture where trainable transformations are applied before 
and after propagation).
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Subgraph sampling. Subgraph sampling techniques (Zeng et  al., 2019; Chiang et  al., 
2019; Zeng et  al., 2020) construct batches by sampling an induced subgraph of the full 
graph. In particular, for subgraph sampling methods, the sampled nodes in each layer of 
the model in a batch are the same. In practice, subgraph sampling seems to outperform 
layer-wise sampling (Chen et  al., 2020). GraphSAINT (Zeng et  al., 2020), which uses a 
random-walk sampler with an importance sampling correction similar to Chen et  al. 
(2018a), Zou et  al. (2019), seems to have the best performance so far. Our local2global 
approach shares similarities with subgraph sampling, most notably ClusterGCN (Chiang 
et al., 2019), which uses graph clustering techniques to sample the batches. The key distin-
guishing feature of our approach is that we train independent models for each patch (and 
then we stitch together the resulting embeddings), whereas for ClusterGCN, model param-
eters have to be kept synchronised for different batches, which hinders fully distributed 
training and its associated key benefits (see  Sect.  1). Another recent method, [GNNAu-
toScale, Fey et al. (2021)], combines subgraph sampling with historical embeddings for the 
out-of-sample neighbors of nodes in the sampled subgraph. Historical embeddings avoid 
the loss of information inherent in subgraph sampling techniques, but require storing all 
intermediate embeddings for all nodes, resulting in a large memory footprint. While one 
can use slower memory for the historical embeddings without significantly impacting train-
ing speed, keeping historical embeddings synchronised will still result in significant com-
munications overhead in a distributed setting.

3  The local2global algorithm

The key idea behind the local2global approach to graph embedding is to embed differ-
ent parts of a graph independently by splitting the graph into overlapping “patches” and 
then stitching the patch node embeddings together to obtain a single global node embed-
ding for each node. The stitching of the patch node embeddings proceeds by estimating the 
orthogonal transformations (i.e., rotations and reflections) and translations for the embed-
ding patches that best aligns them based on the overlapping nodes.

Consider a graph G(V,  E) with node set V and edge set E. The input for the local-
2global algorithm is a patch graph Gp(P,Ep) together with a set of patch node embeddings 
X = {X(k)}

p

k=1
 . The node set of the patch graph is the set of patches P , where each node 

Pk ∈ P of the patch graph (i.e., a “patch”) is a subset of V and has an associated node embed-
ding X(k) ∈ ℝ|Pk|×d . We require that the set of patches P = {Pk}

p

k=1
 is a cover of the node set 

V (i.e., 
⋃p

k=1
Pk = V ), and that the patch embeddings all have the same dimension d.

A pair of patches {Pi,Pj} is connected, i.e., {Pi,Pj} ∈ Ep if we have an estimate of the 
relative transformation between Pi and Pj . In particular, we require that a connected pair of 
patches satisfies the minimum overlap condition {Pi,Pj} ∈ Ep ⟹

|||Pi ∩ Pj
||| ≥ d + 1 

which ensures that we can estimate the relative orthogonal transformation.4 We further 
assume that the patch graph is connected such that a global alignment is possible.5 The best 

4 Note that a pair of patches Pi,Pj that satisfies the minimum overlap condition |||Pi ∩ Pj
||| ≥ d + 1 is not nec-

essarily connected in the patch graph, i.e., we do not necessarily estimate the relative transformations for all 
pairs of patches that satisfy the minimum overlap criterion.
5 If the patch graph has multiple connected components, the aligned embedding for one component is inde-
pendent of the aligned embeddings in other components.
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way to construct the patch graph will depend on the application at hand. We describe two 
possible constructions in Sects. 4.2 and 5.2.

The local2global algorithm for aligning the patch embeddings proceeds in three stages 
and is an evolution of the approach in Cucuringu et al. (2012a, 2012b). We assume that 
each patch embedding X(k) is a perturbed version of an underlying global node embedding 
X , where the perturbation is composed of scaling ( ℝ+ ), reflection ( ℤ2 ), rotation (SO(d)), 
translation ( ℝd ), and noise. The goal is to estimate the transformation applied to each patch 
using only pairwise noisy measurements of the relative transformation for pairs of con-
nected patches. In the first two stages, we estimate the scale and the orthogonal transforma-
tion to apply to each patch embedding, using a variant of the eigenvector synchronization 
method (Singer, 2011; Cucuringu et al., 2012a, b). Aligning the patches from the perspec-
tive of reflections amounts to associating, to each patch, a value of −1 (apply a reflection) or 
+1 (do not apply a reflection). Similarly, aligning the patches from the perspective of their 
rotations amounts to associating, to each patch, a rotation matrix (element of O(d)). In the 
third stage, we estimate the patch translations by solving a least-squares problem. Aligning 
patches with respect to translations amounts to estimating, for each patch, the d-dimen-
sional translation vector in ℝd . Note that unlike Cucuringu et al. (2012a, 2012b), we solve 
for translations at the patch level rather than solving a least-squares problem for the node 
coordinates. This means that the computational cost for computing the patch alignment is 
independent of the size of the original network and depends only on the amount of patch 
overlap, the number of patches and the embedding dimension.

Once such scaling, reflection, rotation, translations transformations are applied to each 
patch, all the patches should be synchronized in a globally consistent framework. In the 
current setting, we are essentially performing synchronization over the Euclidean group 
Euc(d) ≅ O(d) ×ℝ

d . The estimation procedure for scaling and orthogonal transformations 
are independent from each other and invariant under translations. However, the optimal 
translations depend on the other transformations and it is thus essential that the transla-
tion synchronization step is performed at the end (ie, synchronization over ℝd ), after hav-
ing performed the rotation synchronization in the first instance (ie, synchronization over 
O(d) ≅ ℤ2 × SO(d) ). We illustrate the different steps of the local2global algorithm in 
Fig. 1.

3.1  Eigenvector synchronisation over scales

As an optional first step of the local2global algorithm, we synchronise the scales of the 
patch embeddings. Whether or not synchronisation over scales is beneficial depends on 
the properties of the chosen embedding method. In particular, if the embedding method 
determines the overall scale based on global properties of the graph (e.g., through nor-
malisation), scale synchronisation is likely beneficial as one expects patch embeddings to 
have different scales. However, if the embedding method determines the overall scale only 
based on local properties (e.g., by trying to fix edge lengths), scale synchronisation may 
not be necessary and may hurt the final embedding quality by fitting noise. We assume that 
to each patch Pi there corresponds an unknown scale factor si ∈ ℝ+ . For each pair of con-
nected patches (Pi,Pj) ∈ Ep , we have a noisy estimate rij ≈ sis

−1
j

 for the relative scale of the 
two patches. We estimate rij using the method from Horn et al. (1988) as
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For each pair of connected patches (Pi,Pj) ∈ Ep , we have a consistency equation si ≈ rijsj , 
as we can estimate the scale of a patch based on the scale of one of its neighbors in the 
patch graph and the relative scale between them. Using a weighted average to combine 
estimates based on different neighbors, we arrive at

(4)rij =

�∑
u∈Pi∩Pj

X
(i)
u −

1

�Pi∩Pj�
∑

v∈Pi∩Pj
X
(i)
v

�∑
u∈Pi∩Pj

X
(j)
u −

1

�Pi∩Pj�
∑

v∈Pi∩Pj
X
(j)
v

.

(5)si ≈
�

j

wijrijsj∑
j wij

,

(a) (b)

(c)(d)

Fig. 1  Schematic overview of the different steps of the local2global algorithm. (a) Synchronisation over 
scales. (b) Synchronisation over orthogonal transformations. (c) Synchronisation over translations. (d) 
Global node embedding as centroid of aligned patch embeddings
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where we set wij =
|||Pi ∩ Pj

||| if {Pi,Pj} ∈ Ep and wij = 0 otherwise, as we expect pairs of 
patches with larger overlap to result in a more reliable estimate of the relative scale. Based 
on Eq. (5), we use the leading eigenvector ŝ of the matrix with entries

(which has strictly positive entries by the Perron-Frobenius theorem, provided the patch 
graph is connected) to estimate the scale factors. We normalise ŝ such that 1

p

∑
j ŝj = 1 to fix 

the global scale and compute the scale-synchronized patch embeddings as X̃(i)
= X

(i)ŝi.

3.2  Eigenvector synchronisation over orthogonal transformations

Synchronisation over orthogonal transformations proceeds in a similar way to synchronisa-
tion over scales. We assume that to each patch Pi , there corresponds an unknown group 
element Si ∈ O(d) ≃ Z2 × SO(d) (where O(d) is the orthogonal group and SO(d) is the 
group of rotations with elements represented by a d × d orthogonal matrices), and for each 
pair of connected patches (Pi,Pj) ∈ Ep we have a noisy proxy for SiS−1j  , which is precisely 
the setup of the group synchronization problem.

For a pair of connected patches Pi,Pj ∈ P such that {Pi,Pj} ∈ Ep we can estimate the 
relative rotation/reflection via a Procrustes alignment, by applying the method from Horn 
et al. (1988)6 to their overlap as |||Pi ∩ Pj

||| ≥ d + 1 . Thus, we can construct a block matrix R 
where Rij is the d × d orthogonal matrix representing the estimated relative transformation 
from patch Pj to patch Pi if {Pi,Pj} ∈ Ep and Rij = 0 otherwise, such that Rij ≈ SiS

T
j
 for 

connected patches.
In the noise-free case, we have the consistency equations Si = RijSj for all i, j such that 

{Pi,Pj} ∈ Ep . One can combine the consistency equations for all neighbours of a patch to 
arrive at

where we use wij =
|||Pi ∩ Pj

||| to weight the contributions, as we expect a larger overlap to 
give a more robust estimate of the relative transformation. We can write Eq. (6) as S = MS , 
where S = (S1,… , Sp)

T is a pd × d block-matrix and M is a pd × pd block-matrix. Thus, 
in the noise-free case, the columns of S are eigenvectors of M with eigenvalue 1. Thus, fol-
lowing Cucuringu et  al. (2012a, b), we can use the d leading eigenvectors7 of M as the 
basis for estimating the transformations. Let U = (U1,… ,Up)

T be the pd × d matrix whose 
columns are the d leading eigenvectors of M , where Ui is the d × d block of U correspond-
ing to patch Pi . We obtain the estimate Ŝi of Si by finding the nearest orthogonal transfor-
mation to Ui using an SVD (Horn et al., 1988), and hence the estimated rotation-synchro-
nised embedding of patch Pi is X̂

(i)
= X̃

(i)
Ŝ
T

i
.

wijrij∑
j wij

,

(6)Si =
�

j

MijSj, Mij =
wijRij∑

j wij

,

6 Note that the rotation/reflection can be estimated without knowing the relative translation.
7 While M is not symmetric, it is similar to a symmetric matrix and thus has real eigenvectors.
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3.3  Synchronisation over translations

After synchronising the rotation of the patches, we can estimate the translations by solving 
a least-squares problem. Let X̂

(k)

i
∈ ℝ

d be the (rotation-synchronised) embedding of node i 
in patch Pk ( X̂

(k)

i
 is only defined if i ∈ Pk).

Let Tk ∈ ℝ
d be the translation of patch k; then, in the noise-free case, the following con-

sistency equations hold true

We can combine the conditions in Eq. (7) for each edge in the patch graph to arrive at

where T ∈ ℝ
|P|×d is the matrix such that the kth row of T is the translation Tk of patch 

Pk and B ∈ {−1, 1}|Ep|×|P| is the incidence matrix of the patch graph with entries 
B(Pk ,Pl),j

= �lj − �kj , where �ij denotes the Kronecker delta. Equation (8) defines an over-
determined linear system that has the true patch translations as a solution in the noise-free 
case. In the practical case of noisy patch embeddings, we can instead solve Eq. (8) in the 
least-squares sense

We estimate the aligned node embedding X̄ in a final step using the centroid of the aligned 
patch embeddings of a node, i.e.,

3.4  Scalability of the local2global algorithm

The patch alignment step of local2global is highly scalable and does not directly depend on 
the size of the input data. The cost for computing the matrix M is O(|||Ep

|||od
2) where o is the 

average overlap between connected patches (typically o ∼ d ) and the cost for computing 
the vector b is O(|||Ep

|||od) . Both operations are trivially parallelisable over patch edges. The 
translation problem can be solved with an iterative least-squares solver with a per-iteration 
complexity of O(|||Ep

|||d) . The limiting step for local2global is usually the synchronization 
over orthogonal transformations which requires finding d eigenvectors of a d|P| × d|P| 
sparse matrix with |||Ep

|||d
2 non-zero entries for a per-iteration complexity of O(|||Ep

|||d
3) . This 

means that in the typical scenario where we want to keep the patch size constant, the patch 
alignment scales almost linearly with the number of nodes in the dataset, as we can ensure 
that the patch graph remains sparse, such that |||Ep

||| scales almost linearly with the number of 
patches. The O(|||Ep

|||d
3) scaling puts some limitations on the embedding dimension attaina-

ble with the local2global approach, though, as we can see from the experiments in 

(7)X̂
(k)

i
+ Tk = X̂

(l)

i
+ Tl, i ∈ Pk ∩ Pl.

(8)BT = C, C(Pk ,Pl)
=

∑
i∈Pk∩Pl

X̂
(k)

i
− X̂

(l)

i

��Pk ∩ Pl
��

,

(9)T̂ = argmin
T∈ℝp×d

‖BT − C‖2
2
.

(10)X̄i =

∑
{Pk∈P∶i∈Pk}

X̂
(k)

i
+ T̂k

��{Pk ∈ P ∶ i ∈ Pk}
��
.
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Sect. 4.5, it remains feasible for reasonably high embedding dimension. We note that one 
can use a hierarchical version of local2global (see Sect. 6) to further increase the embed-
ding dimension in a scalable fashion.

The preprocessing to divide the network into patches scales as O(m). The speed-up 
attainable due to training patches in parallel depends on the oversampling ratio (i.e., the 
total number of edges in all patches divided by the number of edges in the original graph). 
As seen in Sect. 4.5, we achieve good results with moderate oversampling ratios.

3.5  Global reconstruction for synthetic data

The core goal of the local2global algorithm is to reconstruct a global embedding from a 
set of noisy local embeddings. Testing this reconstruction directly on real-world graph 
datasets is difficult due to the lack of ground-truth embeddings. Instead, we consider 
synthetic test data where we generate the ground-truth embedding directly in this sec-
tion and use the performance on down-stream tasks as a proxy for embedding quality 
when evaluating local2global on real-world data in Sect. 4.

We generate the synthetic data by first selecting 5 cluster centers ci , i ∈ {1,… , 5} . 
For d = 2 , we use 5 equally-spaced points on the unit circle as the cluster centers and 
for d > 2 we sample the cluster centers uniformly at random on the d-dimensional unit 

(a) (b)

(c) (d)

Fig. 2  Reconstruction error for local2global on synthetic test data with (a), (b) large patch overlaps ( � = 2 ) 
and (c), (d) small patch overlaps ( � = 1 ). (a) and (c) The tails indicate the difference between original and 
reconstructed points and patch centers are highlighted in red
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sphere. For each cluster, we sample the number of points ni uniformly at random from 
[128, 2000] and sample ni points from an uncorrelated d-dimensional normal distribu-
tion with mean ci and standard deviation 0.2. The resulting ground-truth embedding 
has non-trivial variations in point density and obvious clusters (see Fig.  2). From the 
ground-truth embedding we construct a set of overlapping patches as follows: 

1. Select 10 data points uniformly at random as the patch centers pj , j ∈ {1,… , 10} and 
initialise the patches Pj = {pj}.

2. For each data point, find the distances dj to all patch centers and add it to patch Pj if 
dj ≤ �minj dj (i.e., a point is added to the patch with the nearest center and any other 
patch with a center that is at most a factor � further away than the nearest one).

3. Consider each patch Pi in turn and if ||Pi
|| < 128 or |||{j ∶

|||Pi ∩ Pj
||| ≥ 64}

||| < 4 , expand Pi 
by adding the next-nearest data point that is not already included in the patch. Repeat 
until all patches satisfy the constraints.

4. Construct an initial patch graph Gp(P,Ep) by connecting a pair of patches Pi,Pj if |||Pi ∩ Pj
||| ≥ 64.

5. If Gp(P,Ep) is not connected, consider all pairs of patches Pi,Pj such that Pi and Pj are 
in different components and order them by the distance between patch centers. Find 
the 64 data points with the smallest combined distance to pi and pj for the first pair and 
add them to both patches if they are not already included and add {Pi,Pj} to Ep . Apply 
the same procedure to the next-closest pair of patches until the patch graph becomes 
connected. (Note that multiple edges may be added between the same pair of original 
components before the patch graph becomes connected.)

For the results in Fig. 2, we generate 10 independent ground-truth embeddings for each 
choice of d using the procedure above and report the mean and standard deviation of 
the results. We construct the patch embeddings by perturbing the ground truth embed-
ding for data points in the patch by first adding normally distributed noise with mean 0 
and standard deviation given by the noise level in Fig. 2. Next we apply an orthogonal 
transformation sampled uniformly at random, a normally-distributed shift with stand-
ard deviation 100 and a scaling sampled log-uniformly from [0.01,  100]. Finally, we 
apply the local2global algorithm to reconstruct the global embedding and use stand-
ard Procrustes analysis to compute the alignment error between the ground-truth and 
reconstructed embedding where the Procrustes error is the sum of squared differences 
between the standardised and aligned ground-truth and reconstructed embeddings. 
We consider two scenarios, � = 2 , which results in large patch overlaps and a dense 
patch graph and � = 1 , where the patch overlaps are only driven by the connectivity and 
degree constraints, resulting in small patch overlaps and a sparse patch graph. Compar-
ing the results between Fig. 2b and d, we see that we can closely reconstruct the ground-
truth for small levels of noise in both scenarios. However, increasing the amount of 
overlap between patches clearly improves the robustness of the reconstruction for high 
levels of noise especially for higher-dimensional embeddings.
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4  Evaluation on edge reconstruction and semi‑supervised 
classification

4.1  Data sets

To test the viability of the local2global approach to graph embeddings, we consider data 
sets of increasing node set size. For the small-scale tests, we consider the Cora and Pub-
med citation data sets from Yang et al. (2016) and the Amazon photo co-purchasing data 
set from Shchur et al. (2019).

For the large-scale test we use the MAG240m data from Hu et  al. (2021).  For 
MAG240m, we consider only the citation edges and preprocess the data set to make the 
edges undirected. We use the features as is without further processing. We show some sta-
tistics of the data sets in Table 1.

4.2  Patch graph construction

The first step in the local2global embedding pipeline is to divide the network G(V, E) into 
overlapping patches. In some federated-learning applications, the network may already 
be partitioned and some or all of the following steps may be skipped provided the result-
ing patch graph is connected and satisfies the minimum overlap condition for the desired 
embedding dimension. Otherwise, we proceed by first partitioning the network into non-
overlapping clusters and then enlarging clusters to create overlapping patches. This two-
step process makes it easier to ensure that patch overlaps satisfy the conditions for the 
local2global algorithm without introducing excessive overlaps, than if we were to use a 
clustering algorithm that produces overlapping clusters directly. We use the following pipe-
line to create the patches:

• Partition the network into p non-overlapping clusters C = {Ck}
p

k=1
 such that ||Ck

|| ≥
d+1

2
 

for all k. We use METIS (Karypis & Kumar, 1998) to cluster the networks for the 
small-scale experiments in Sect. 4.5. For the large-scale experiments using MAG240m, 
we use FENNEL (Tsourakakis et al., 2014) to cluster the network. FENNEL obtains 
high-quality clusters in a single pass over the nodes and is thus scalable to very large 
networks. We choose these two techniques for the purpose of this paper as they are 
relatively standard and they are scalable as needed. One could a priori use any other 
clustering technique or assign nodes to clusters based on known metadata.

• Initialize the patches to P = C and define the patch graph Gp(P,Ep) , where {Pi,Pj} ∈ Ep 
iff there exist nodes i ∈ Pi and j ∈ Pj such that {i, j} ∈ E . (Note that if G is connected, 

Table 1  Data sets

Nodes Edges Features Classes

Cora (Yang et al., 2016) 2708 10556 1433 7
Amazon photo (Shchur et al., 2019) 7650 238162 745 8
Pubmed (Yang et al., 2016) 19717 88648 500 3
MAG240m (Hu et al., 2021) 121751666 2593241212 768 153
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Gp is also connected.) If the patch graph defined in this way is not connected (which 
can happen if the underlying graph G has multiple connected components), we proceed 
by finding the connected components of the patch graph. For each pair of connected 
components of the patch graph we sample a pair of patches and add the corresponding 
edge to the patch graph, ensuring that the patch graph is connected.

• Sparsify the patch graph Gp to have mean degree k using Algorithm 1 adapted from the 
effective-resistance sampling algorithm of Spielman and Srivastava (2011). The patch 
graph constructed in the previous step is often dense which would make the alignment 
step of the local2global algorithm non-scalable. The goal for the sparsification step is 
to minimise the influence of edges in G that fall between patches and that are not repre-
sented by a corresponding edge in Gp . Such edges are likely excluded from the training 
process which may bias the results. We use the conductance 

 as a proxy for the importance of a patch edge {Pi,Pj} in representing the underlying 
structure of G. The assumption here is that an edge between patches with many inter-
nal edges has a much smaller influence on the resulting embedding than one between 
patches where at least one of the patches has a small number of internal edges. Based 
on the conductance weights, we first compute the effective resistance of each patch 
edge using the algorithm of Spielman and Srivastava (2011). We then construct the 
sparsified patch graph by first including all edges of a maximum spanning tree (this 
ensures that the patch graph remains connected) and then sampling the remaining 
edges without replacement with probability proportional to the effective resistance. For 
MAG240m, we construct the sparsified patch graph based on the raw conductance val-
ues directly rather than the effective resistances as computing effective resistances for 
all patch edges is no longer computationally feasible at this scale.

• Expand the patches to create the desired patch overlaps. We define a lower bound 
l ≥ d + 1 and upper target u for the desired patch overlaps and use Algorithm  2 to 
expand the patches such that |||Pi ∩ Pj

||| ≥ l for all {Pi,Pj} ∈ Ep.

(11)cij =
|{(u,v)∈E∶u∈Pi,v∈Pj}|

min(|{(u,v)∈E∶u∈Pi}|,|{(u,v)∈E∶u∈Pj}|)
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4.3  Embedding models

We consider two embedding approaches with different objective functions, the variational 
graph auto-encoder (VGAE) architecture of Kipf and Welling (2016) and deep-graph 
infomax (DGI) architecture of Veličkovč et al. (2019). We reiterate however that one can 
a-priori incorporate any embedding method within our pipeline (see Sect.  3). From this 
perspective, the expressivity of the local2global algorithm largely depends on the chosen 
baseline embedding method, as the patch synchronisation process would promote similar-
ity between local embeddings and the global embedding. For instance, a smaller number 
of patches would mean less distortion of the global embedding. Nevertheless, the present 
work mainly focuses on distributed representation learning and we leave a full investiga-
tion on expressivity as future work.

For the choices of the training hyperparameters we largely follow the choices of Kipf 
and Welling (2016), Veličkovč et al. (2019). We use the Adam optimizer (Kingma & Ba, 
2015) for training with learning rate set to 0.001 to train all models. We use early-stopping 
on the training loss with a maximum training time of 10 000 epochs and a patience of 20 
epochs as in Veličkovč et al. (2019).8 For DGI, we normalize the bag-of-word features such 
that the features for each node sum to 1 as in Veličkovč et al. (2019). However, we do not 
apply the feature normalization when training VGAE models as it severely hurts perfor-
mance. We set the hidden dimension of the VGAE models to 4 × d , where d is the embed-
ding dimension.9

4.4  Evaluation tasks

We consider two tasks for evaluating the embedding quality. The first task we consider is 
network reconstruction, where one tries to reconstruct the edges based on the embedding. 

8 We use the same training strategy also for the VGAE models as we find that it gives a small improvement 
over the training strategy of Kipf and Welling (2016) in preliminary experiments.
9 We explored setting the hidden dimension to 2 × d in preliminary experiments. However this led to train-
ing instability for small embedding dimension.
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We use the inner product between embedding vectors as the scoring function and use the 
area under the ROC curve (AUC) as the quality measure.

The second task we consider is semi-supervised classification. We follow the procedure 
of Veličkovč et al. (2019) and train a classification model to predict the class labels based 
on the embedding. For the small-scale tests in Sect. 4.5.1 we use a simple logistic classi-
fier whereas for MAG240m we use a deeper MLP as detailed in Sect. 4.5.2. In Sect. 4.5.1, 
we use 20 random labelled examples per class as the training set, 500 random examples 
as the validation set and the remaining examples as the test set. We sample a new random 
train-test split for each run of the classifier. We train the classifier for a maximum of 10 000 
epochs with early stopping based on the validation loss with a patience of 20 epochs using 
the ADAM optimiser (Kingma & Ba, 2015) with a learning rate of 0.01.10 For the large-
scale test on MAG240m, we use the full training data to train the classifier and evaluate the 
performance on the validation set,11 except for 10 000 randomly sampled papers which are 
used as the validation set.

4.5  Results

To get some intuition about the embeddings we obtain, we first visualise the results using 
UMAP (McInnes et  al., 2020). We show the results for a d = 128 stitched local2global 
embeddings obtained with VGAE in Fig. 3. For the small-scale data sets, we observe that 
the different classes appear clustered in the embedding. While some clusters are visible for 
MAG240m, they appear less well-defined. This may be partly due to the much larger num-
ber of classes (153), and may also suggest that the quality of the embedding is not as good.

4.5.1  Small‑scale tests

For the small-scale tests it is feasible to train the embedding models directly on the entire 
data set using full-batch gradient descent. This makes it possible to directly compare the 
quality of the embeddings obtained by stitching patch-embeddings using local2global 
with using the underlying embedding method directly. As a baseline, we also consider the 
case where we do not apply any alignment transformations and simply compute the node 
embeddings by taking the centroid over the independently trained patch embeddings (no-
l2g below). Additionally, we also perform an ablation study where we only apply some of 
the patch-alignment steps during the stitching process. This results in the following five 
scenarios:

•  full: Model trained on the full data.
• l2g: Separate models trained on the subgraph induced by each patch and stitched using 

the local2global algorithm.
•  rotate-only Patches are aligned by only synchronising over orthogonal transformations 

without applying rescaling or translation.
• translate-only Patches are aligned by finding the optimal translations without synchro-

nisation over scales or orthogonal transformations.

10 We found this choice of learning rate to work well in preliminary experiments whereas much larger 
learning rates can result in unstable training and much smaller learning rates result in very slow training.
11 The labels for the test set are not currently included in the public data.
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•  no-l2g: Centroid over patch embeddings that contain the node without applying any 
alignment transformations.

For Cora and Amazon photo, we split the network into 10 patches and sparsify the patch 
graph to a target mean degree k = 4 . For Pubmed, we split the network into 20 patches and 
sparsify the patch graph to a target mean degree of k = 5 . We set the lower bound for the 
overlap to l = 256 and upper bound to u = 1024.12

Fig. 3  UMAP projection of 128-dimensional VGAE-l2g embeddings for (a) Cora, (b) Amazon photo, (c) 
Pubmed, and (d) MAG240m. Nodes are coloured by class label. For MAG240m, the visualisation is based 
on a sample of 500 000 labeled papers

12 These parameter choices result in sufficient overlap between patches to obtain stable alignment results 
without excessive oversampling of edges. Using standard model-selection procedures such as cross-valida-
tion to select the hyper-parameters for the patch graph construction is difficult as the best performance can 
typically be achieved by including each node in every patch which results in an ensemble embedding over 
full models and looses all scalability and parallelisation benefits.
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(a) (b) (c)

(d) (e) (f)

Fig. 4  VGAE embeddings: AUC network reconstruction score (top) and classification accuracy (bottom) as 
a function of embedding dimension using full data or stitched patch embeddings for (a), (d) Cora, (b), (e) 
Amazon photo, and (c), (f) Pubmed

(a) (b) (c)

(d) (e) (f)

Fig. 5  DGI embeddings: AUC network reconstruction score (top) and classification accuracy (bottom) as 
a function of embedding dimension using full data or stitched patch embeddings for (a), (d) Cora, (b), (e) 
Amazon photo, and (c), (f) Pubmed

We train each model 10 times starting with different random initialisations and addition-
ally consider 5 independent random train-test splits for each embedding (for a total of 50 
random train-test splits) when evaluating the semi-supervised classification performance. 
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We show the resulting means and standard deviations for VGAE embeddings in Fig. 4 and 
for DGI embeddings in Fig. 5. Overall, the gap between the results for ‘l2g’ and ‘full’ is 
generally small. The aligned ‘l2g’ embeddings typically outperform the unaligned ‘no-l2g’ 
baseline by a significant margin highlighting the benefit of the alignment steps. Notable 
exceptions are the DGI embeddings for low embedding dimension (see Fig. 5) where the 
unaligned ‘no-l2g’ embeddings outperform both the ‘full’ and ‘l2g’ embeddings. How-
ever, the overall accuracy is low and the behaviour of ‘l2g’ closely tracks that of the ‘full’ 
embedding, suggesting that this is a limitation of the underlying embedding approach, 
which requires relatively high embedding dimension for good performance, rather than of 
the local2global alignment. Comparing the partial alignment scenarios we see that ‘l2g’ 
typically performs at least as well as ‘rotate-only’ and ‘translate-only’ with the notable 
exception of low-dimensional DGI embeddings. While the performance of ‘rotate-only’ is 
often very close to that of ‘l2g’, the synchronisation over orthogonal transformations is by 
far the most computationally intensive alignment operation, such that there is little reason 
to skip the other transformations as they do not hurt and sometimes can be a significant 
improvement (see especially the VGAE embeddings for Pubmed in Fig. 4f).

Comparing the two embedding methods, we see that VGAE has better network recon-
struction performance than DGI. This is not surprising, as network reconstruction corre-
sponds to the training objective of VGAE. In terms of semi-supervised classification per-
formance, we see that VGAE achieves good results already for low embedding dimension 
with d = 16 often being sufficient whereas DGI requires higher embedding dimensions for 
good results. This makes VGAE a better fit for use with local2global in practice due to 
the scalability characteristics of the local2global algorithm (see Sect. 3.4). For networks 
of this size, full-batch training is still very fast and memory requirements are not an issue. 
As such, we do not expect to see significant benefits from using local2global in terms of 
execution times. However, for completeness, we include a comparison of execution times 
in “Appendix”.

An important hyper-parameter for the local2global algorithm is the choice of the num-
ber of patches as it controls the amount of parallelisation possible. For small networks, a 
large number of patches will result in excessive patch overlaps. For large networks, (see, 
e.g., Sect. 4.5.2), the choice of the number of patches is essentially dictated by memory 
constraints.13 In Fig. 6 we show the behaviour of the semi-supervised classification accu-
racy as we increase the number of patches for Pubmed. While we see a slight downward 
trend in accuracy as the number of patches increases, the effect is small and seems to 
decrease with embedding dimension. The oversampling ratio increases slowly with the 
number of patches from a ratio of 1.3 for 5 patches to 3.4 for 50 patches. We also observed 
similar trends on the smaller networks.

4.5.2  Large‑scale tests

For the large-scale MAG240m network we use two iterations of FENNEL (Tsourakakis 
et al., 2014) to divide the network into 10 000 clusters.14 We set the lower bound for the 
overlap to l = 512 and the upper bound to u = 2048 and sparsify the patch graph to have a 
mean degree ⟨k⟩ = 20.

13 One can in principle combine local2global with layer-wise sampling to overcome this constraint.
14 The choice for the number of patches is largely driven by the requirement for the largest patch to be 
trainable within the 32GB memory of a single GPU on the JADE2 cluster used for training.
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We show the results for VGAE and DGI in Table 2. For the semi-surpervised classifi-
cation results we use a grid search over the parameters of the MLP as in Hu et al. (2021), 
with hidden dimension in {128, 256, 512, 1024} , number of layers in {2, 3, 4} , and dropout 
probability in {0, 0.25, 0.5} . We fix the batch size to 100 000 and use the Adam optimizer 
(Kingma & Ba, 2015) with learning rates in {0.01, 0.001, 0.0001} . We use early stopping 
based on the validation loss with patience of 20 epochs and maximum number of epochs 
set to 1000. We use batch normalisation (Ioffe & Szegedy, 2015) after each layer together 
with a ReLU non-linearity. We search over the hyperparameters separately for each embed-
ding and report results for the model with the highest validation accuracy. However, the 
best parameter setting is consistent across all embeddings reported in Table  2 with the 
highest validation accuracy achieved by a 4-layer MLP with hidden dimension 1024 
trained with learning rate set to 0.0001. There is a clear improvement when comparing 
the results for local2global (l2g) with the no transformation baseline (no-l2g), and perfor-
mance results for network reconstruction are high for both embedding methods. While the 
classification accuracies we obtain with local2global in Table 2 with VGAE and DGI are 
on par with that of MLP in Hu et al. (2021), we note that the classification accuracy results 
are not directly comparable. All approaches in Hu et al. (2021) differ from the local2global 

(a) (b) (c)

(d) (e) (f)

Fig. 6  Effect of the number of patches on the classification accuracy achieved by local2global embeddings 
for Pubmed for VGAE with (a) d = 8 , (b) d = 32 , and (c) d = 128 and DGI with (d) d = 8 , (e) d = 32 , and 
(f) d = 128

Table 2  Network reconstruction 
(AUC) and classification 
accuracy on MAG240m for 
d = 128 with VGAE embeddings 
(first two rows) and DGI 
embeddings (second two rows)

l2g no-l2g

VGAE reconstruction (AUC) 0.96 0.70
VGAE classification (Acc.) 0.54 0.42
DGI reconstruction (AUC) 0.91 0.69
DGI classification (Acc.) 0.53 0.45
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pipeline in at least one of two fundamental ways: (1) the training step is supervised and (2) 
there is no dimensionality reduction on a feature level.

5  Application to anomaly detection

As an application of our local2global algorithm, we consider the task of anomaly detection 
in a temporal cyber-security data set. An anomaly is defined as an outlier data point, which 
does not follow the collective common pattern of the majority of the data at hand, and there 
are strong premises for highlighting and separating it from the rest of the data. One popular 
class of such methods falls under the umbrella of unsupervised learning algorithms, tech-
niques aimed at uncovering patterns in data without any available labels. Existing methods 
usually look for areas of high density of points and assign them to clusters, while points 
in less dense regions are not included in the clusters and flagged as anomalies Ester et al. 
(1996). However, this approach hinges on the assumption that there exists a single global 
embedding of all the points in the study (where points that behave more similarly have a 
higher proximity in the embedding), and this embedding is then leveraged for the anomaly 
detection task via a preferred method of choice. One could use the local2global framework 
to significantly increase the scalability of such an approach. In what follows, we investigate 
whether the consistency of embeddings over time can be used to detect outlier behavior.

In particular, we consider the netflow part of the Los Alamos National Laboratory 
Unified Host and Network Data Set (LANL-netflow, Turcotte et  al. (2018)). LANL-net-
flow consists of 89 days of processed network flow records (see Turcotte et al. (2018) for 
details). For our experiments we aggregate the network flows per day, restricted to TCP. 
We treat the network as directed and unweighted, only considering the presence or absence 
of a directed connection. For the embeddings, we consider each day as a patch and treat the 
network as bipartite, computing separate source and destination embeddings for each node 
using the SVD-based method of Dhillon (2001).

5.1  Patch embeddings

In particular, let A(t) be the adjacency matrix for the network at day t, where A(t)

ij
= 1 if 

there was a directed connection between source node i and destination node j during day t 
and A

(t)

ij
= 0 otherwise. We consider the normalized adjacency matrix 
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5.2  Reference embedding

We use the local2global algorithm to construct a reference embedding to use as a baseline 
for identifying anomalous behavior. As mentioned above, we treat each day of observa-
tions as a patch. Computers are largely persistent on the network from one day to the next, 
such that we have sufficiently many overlapping nodes between different patches to reliably 
estimate the relative transformations. We define the patch graph Gp(P,Ep) based on the 
delay between patches, such that {Ps,Pt} ∈ Ep ⟺ |s − t| ∈ {1, 7, 14, 21, 28, 35, 42, 49} , 
i.e., we compute relative transformations between patches that are one day and multiples of 
one week apart. In preliminary experiments, we found that including long-range connec-
tions in the patch graph is crucial to obtaining good results in this application. We sepa-
rately apply the local2global algorithm to obtain a reference source embedding X̄ and a 
reference destination embedding Ȳ which are defined as the centroid over the aligned patch 
source embeddings {X̄(t)

} and destination embeddings {Ȳ(t)
} (see Eq. (10)). Note that we 

only compute a single reference embedding based on all patches. In practical applications, 
one would apply the alignment in a streaming fashion, such that the reference embedding 
is only based on past data and updated as new data becomes available. However, given the 
limited snapshot of data available as part of the LANL-netflow data set, applying such a 
streaming algorithm is problematic.

5.3  Anomaly score

We define the raw source anomaly score Δ(t)
si

=
‖‖‖X̄i − X̄

(t)

i

‖‖‖2 for source node i at time t, and 

raw destination anomaly score Δ(t)

dj
=
‖‖‖Ȳj − Ȳ

(t)

j

‖‖‖2 for destination node j at time t based on 
the Euclidean distance between the reference embedding and the aligned patch embed-
dings. The raw scores are not comparable across nodes, as the behavior and hence the 
embedding is inherently more stable for some nodes than others.

We use a z-score transformation to standardize the scores and make them comparable 
between nodes to enable easier identification of anomalous behavior. We define the stand-
ardized anomaly scores as

where we use �−t and �−t to denote the mean and standard deviation estimated based on all 
data points except the data point at time t. Leaving out the current point when estimating 
the mean and standard deviation has the effect of boosting the scores for outliers and thus 
leads to a clearer signal.

5.4  Results

We visualize the reference embeddings X̄ and Ȳ together with the raw anomaly scores 
in Fig.  7 using UMAP (McInnes et  al., 2020). For most nodes, the embeddings are 
very stable across time with only small average error between aligned patch embed-
dings and the reference embedding. However, some nodes exhibit much noisier behavior 
with large average error. This difference in behavior is normalized out by the z-score 

(12)Δ̂(t)
si
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Δ(t)
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− 𝜇−t(Δsi

)

𝜎−t(Δsi
)
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transformation of Eq. (12) such that it is possible to define a common threshold for 
anomalous behavior. Another source of potential issues are nodes with insufficient 
observations to reliably estimate normal behavior. While we use all nodes to compute 
the embeddings for each day and the reference embedding, we restrict the results in 
Figs. 7 and 8 to nodes with at least 21 days of observations.

(a) (b)

Fig. 7  UMAP visualisation of average alignment errors for (a) source embeddings and (b) destination 
embeddings. Only nodes with at least 21 days of observations are shown in the visualisation

(a) (b)

Fig. 8  Standardized anomaly scores for known red-team targets (top) and outlier countOutliers are defined 
as nodes with scores in the 0.999 quantile of the score distribution across days and nodes. (Outliers are 
defined as nodes with scores in the 0.999 quantile of the score distribution across days and nodes.) (bottom) 
for (a) source embeddings and (b) destination embeddings. The dashed line indicates the 0.999 quantile 
of the anomaly score distribution over all days and nodes with at least 21 days of observations. Days with 
observed redteam activity are highlighted in red
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Figure  8 shows the standardized anomaly scores for the nodes with known red-team 
activity. We see a clear increase in the number of outliers for the affected nodes during 
the attack period, especially for the destination embedding. This suggests that red-team 
activity may have been responsible for some unusual network activity. However, it should 
be noted that there is no clear separation between red-team activity and other sources of 
unusual activity, as we observe outliers of similar magnitude for other nodes throughout 
the data. This suggests that network flows may provide an additional useful source of sig-
nal for identifying suspicious behavior. Combining network flows with node-level informa-
tion from the process logs using, for example, a GCN-based embedding approach such as 
VGAE or DGI, could be interesting. However, extracting useful features from the process 
data is not straightforward, and we leave this task as future work.

6  Conclusion

In this work, we introduced a framework that can significantly improve the computa-
tional scalability of generic graph embedding methods, rendering them scalable to real-
world applications that involve massive graphs, potentially with millions or even billions 
of nodes. At the heart of our pipeline is the local2global algorithm, a divide-and-conquer 
approach that first decomposes the input graph into overlapping clusters (using one’s 
method of choice), computes entirely-local embeddings via the preferred embedding 
method for each resulting cluster (exclusively using information available at the nodes 
within the cluster), and finally stitches the resulting local embeddings into a globally con-
sistent embedding, using established machinery from the group synchronization literature. 
Our results on small-scale data sets achieve comparable accuracy on graph reconstruction 
and semi-supervised clustering as globally trained embeddings. We have also demonstrated 
that local2global achieves a good trade-off between scalability and accuracy on large-scale 
data sets using a variety of embedding techniques and downstream tasks. Our results also 
suggest that the application of local2global to the task of anomaly detection is fruitful with 
the potential for several future work directions.

More specifically, a first direction is to further increase the size of node and edge sets by 
another order of magnitude, and consider web-scale graphs with billions of nodes, which 
many existing algorithms will not be able to handle and for which distributed training 
is crucial. For very large data sets, or in other settings where we have a large number of 
patches, solving the eigenvalue problem implied by Eq. (6) to synchronise the orthogonal 
transformations can become a computational bottleneck. One could consider a hierarchi-
cal approach for the patch alignment step to address this issue. In a hierarchical approach, 
one would cluster the patch graph and apply local2global to align the patches within each 
cluster and compute the aligned node embedding for each cluster. One could then apply 
local2global again to align the patch clusters embeddings.15 Such a hierarchical approach 
would make it trivial to parallelize the patch alignment, but may come with a penalty in 
terms of the embedding quality. It would be interesting to explore the trade-off between 

15 A preliminary implementation of this hierarchical approach is available in https:// github. com/ LJeub/ 
Local 2Glob al_ embed ding.

https://github.com/LJeub/Local2Global_embedding
https://github.com/LJeub/Local2Global_embedding
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scale and embedding quality within this hierarchical framework. A related direction is to 
explore the interplay of our pipeline with different clustering algorithms, and in particular 
hierarchical clustering, and assess how the patch graph construction mechanism affects the 
overall performance.

A second direction is to further demonstrate particular benefits of locality and asynchro-
nous parameter learning. These have clear advantages for privacy preserving and feder-
ated learning setups. It would also be particularly interesting to identify further settings in 
which this local2global approach can outperform global methods. The intuition and hope 
in this direction stems from the fact that asynchronous locality can be construed as a regu-
larizer (much like sub-sampling, and similar to dropout) and could potentially lead to better 
generalization and alleviate the oversmoothing issues of deep GCNs, as observed in Chi-
ang et al. (2019).

Finally, the application of local2global to anomaly detection is promising and shows 
that network flows could provide useful additional signal for identifying network intru-
sions, which is a particularly challenging task given the noisy nature of the data and the 
rarity of malicious events. It would be interesting to apply the methodology in Sect. 5 to 
further data sets (Highnam et al., 2021; DARPA OpTC, 2020), and to incorporate node-
level attributes into the embedding techniques. Generating meaningful node-level features 
for anomaly detection (e.g., based on device logs) and incorporating a spatio-temporal 
dimension into the analysis also warrant further investigation.

Appendix: Execution time comparison

The main goal of our local2global method is to enable training on large-scale networks 
where full-batch training is not feasible. As mentioned in  Sect. 4.5, for networks of the 
sizes shown bellow, full-batch training is very fast and memory requirements are not an 
issue. As such, we do not expect to see significant benefits from using local2global in 
terms of execution times. However, for completeness, we include a comparison of execu-
tion times (Tables 3, 4, 5).

In order to provide a more meaningful comparison, we disable early stopping for the 
timing comparisons and train all embedding models for 200 epochs in order to reduce the 
variance in execution times. For the training and alignment steps, the reported timings cor-
respond to the median result over 10 runs. The execution time for patch training corre-
sponds to the time needed when training all patches in parallel. The timings for the cluster-
ing and patch graph construction preprocessing steps correspond to a single run, the results 
of which are used for the subsequent training. The processing times do not include the 
overhead for loading data and saving results. We note that the large difference in training 
time between VGAE and DGI is due to an inefficient implementation of VGAE in torch-
geometric 1.7.0 which we used for all experiments.
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